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Example: J1–J2–J3 Model on a Honeycomb Monolayer

The Coupled Cluster Method

J1–J2–J3 Model on the Honeycomb Monolayer Lattice

J1–J2–J3 model on the 2D honeycomb lattice (i.e., all bonds of Heisenberg type)

We’ll look at the case with s = 1
2

spins (viz., the most quantum case)

H = J1

∑

〈i,j〉

si · sj + J2

∑

〈〈i,k〉〉

si · sk + J3

∑

〈〈〈i,l〉〉〉

si · sl

(and set J1 ≡ 1) where, on the honeycomb lattice:

〈i , j〉 bonds J1 ≡ ———— all NN bonds
〈〈i , k〉〉 bonds J2 ≡ - - - - - all NNN bonds

〈〈〈i , l〉〉〉 bonds J3 ≡ - · - · - all NNNN bonds

A

B
NOTE: The honeycomb lattice is bipartite but
non-Bravais (– two sites per unit cell: A, B)
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Limiting Cases

limiting bond cases

J2 = J3 = 0: isotropic HAF on 2D honeycomb lattice

J1 = J3 = 0: two uncoupled isotropic HAFs on 2D triangular

lattice
J1 = J2 = 0: four uncoupled isotropic HAFS on 2D

honeycomb lattice

classical limit (s → ∞)
for J1 > 0: ground-state (GS) phase diagram is complex,
containing 6 different ordered phases -

Néel

Striped

Néel-II

Spiral-I

Spiral-II

Ferromagnetic

for J1 < 0: also 6 phases, related to those above by simple

symmetries (i.e., J1 ⇋ −J1; J3 ⇋ −J3; si
B ⇋ −si

B)
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Classical (s → ∞) Phase Diagram (J1 > 0)

Both the Striped and Néel-II regions actually have an infinitely degenerate family
of non-coplanar ground states, from which the collinear states shown are
selected by thermal or quantum fluctuations

The most highly frustrated point at J2/J1 = 1
2

, J3/J1 = 1
2

(i.e., a classical triple
point) lies along the line J3 = J2
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Néel, Striped, Spiral-I, and Néel-II Model States

2

J3

J
J1

(a) Néel (b) Striped

(c) Spiral-I (d) Néel-II
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Elements of the CCM

We use the coupled cluster method (CCM)

ground-state (GS) wavefunction:

|Ψ〉 = e
S|Φ〉; 〈Ψ̃| = 〈Φ|S̃e

−S ; 〈Ψ̃|Ψ〉 = 〈Φ|Ψ〉 = 〈Φ|Φ〉 ≡ 1

S =
∑

I 6=0

SIC
+
I ; S̃ = 1 +

∑

I 6=0

S̃IC
−
I

C+
0 ≡ 1; C−

I ≡ (C+
I )†; C−

I |Φ〉 = 0, ∀I 6= 0

C+
I |Φ〉 are a complete set of wf’s; [C+

I ,C+
J ] = 0

choose model state |Φ〉 to be, e.g., a classical GS (i.e.,

Néel, Striped, Spiral-I, and Néel-II)

choose spin axes on each site so that |Φ〉 = | ↓↓ · · · ↓〉 in

these local axes

⇒ C+
I → s+

i1
s+

i2
· · · s+

ik
; s+

j ≡ sx
j + is

y
j , in local axes
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Elements of the CCM

each s+
i

in C+
I

can appear at most once for s = 1
2

, twice for s = 1, · · · , and 2s

times for general spin-s case, on a given lattice site i

solve for {SI , S̃I} from GS Schrödinger eqs. for |Ψ〉, 〈Ψ̃| =⇒ equivalently,

minimize H̄ = H̄(SI , S̃I) ≡ 〈Φ|S̃e−SHeS |Φ〉 with respect to all parameters
{SI , S̃I ; ∀I 6= 0}

−→
δH̄

δS̃I

= 0 =⇒ 〈Φ|C−
I

e
−SHe

S |Φ〉 = 0 , ∀I 6= 0

– a coupled set of nonlinear equations for {SI}

=⇒ E = 〈Φ|e−SHe
S |Φ〉 = 〈Φ|He

S |Φ〉 (1)

−→
δH̄

δSI

= 0 =⇒ 〈Φ|S̃e
−S [H,C+

I
]eS|Φ〉 = 0 , ∀I 6= 0

=⇒ 〈Φ|S̃(e−SHe
S − E)C+

I
|Φ〉 = 0 , ∀I 6= 0

– a coupled set of linear generalized eigenvalue equations for {S̃I)} with {SI}

as input
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Elements of the CCM

Note that the nonlinear exponentiated terms only ever

appear in the form of the similarity transform of the

Hamiltonian: e
−SHe

S

=⇒ use the nested commutator expansion

e
−SHe

S = H + [H,S] + 1
2! [[H,S],S] + · · ·

NOTE: This series will terminate exactly after the term

bilinear in S for our Heisenberg Hamiltonians =⇒
CCM satisfies the Goldstone linked cluster theorem and

satisfies the Hellmann-Feynman theorem, for all

truncations on complete set {I}
we use the natural lattice geometry to define the

approximation schemes and we retain all distinct

fundamental configurations (fc) in the set {I} with respect

to space- and point-group symmetries of both the

Hamiltonian and the model state |Φ〉
A similar CCM parametrization exists for excited states too
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CCM Truncation Schemes

only approximation is to truncate set {I}

for s = 1
2

case we typically use the LSUBm scheme in

which we retain all possible multispin-flip correlations over

different locales on the lattice defined by m or fewer
contiguous lattice sites

for s ≥ 1 cases we often use the alternative SUBn–m

scheme in which we retain all multispin-flip correlations
involving up to n spin flips spanning a range of no more

than m adjacent (or contiguous) lattice sites. We then set
m = n and employ the so-called SUBm–m scheme

NOTE: LSUBm ≡ SUB2sm–m for general spin-s case, (i.e.,

LSUBm ≡ SUBm–m only for s = 1
2

case)
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Number of CCM Fundamental Configurations, Nf

For the spin-1/2 J1–J2–J3 model on the honeycomb lattice:

Method Nf

Néel striped Néel-II spiral

LSUB4 5 9 9 66

LSUB6 40 113 85 1080

LSUB8 427 1750 1101 18986

LSUB10 6237 28805 17207 347287

NOTE: To obtain a single data point (i.e., for given values of J2

and J3, with J1 = 1) for the spiral-I phase at the LSUB10 level

we typically require about 6 h computing time using 2000

processors simultaneously.
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CCM Extrapolations to Exact (m → ∞) Limit

at each LSUBm or SUBm–m level the CCM operates at

the N → ∞ limit from the outset

calculate E/N and magnetic order parameter (i.e., local

average onsite magnetization) M ≡ − 1
N

∑

N

〈Ψ̃|sz
i |Ψ〉 in the

local rotated axes

extrapolate to the exact m → ∞ limit, using well-tested
empirical scaling laws

E/N = a0 + a1m−2 + a2m−4

M = b0 + b1m−1 + b2m−2 for unfrustrated models

M = b0 + b1m−0.5 + b2m−1.5 for highly frustrated models

Honeycomb Monolayers & Bilayers via the CCM NMP17 14/40
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J1–J2–J3 Model on the Honeycomb Monolayer (s = 1
2
)

We have done a large study of this model
Results include:

The case when J3 = J2 for which we have investigated the

full phase diagram for both signs of the bonds
References

D.J.J. Farnell et al., PRB 84, 012403 (2011)

P.H.Y. Li et al., PRB 85, 085115 (2012)

R.F. Bishop and P.H.Y. Li, PRB 85, 155135 (2012)

R.F. Bishop, P.H.Y. Li et al., PRB 92, 224434 (2015)

The case when J3 = 0 (i.e., the J1–J2 model); J1 > 0, J2 > 0

References

R.F. Bishop et al., J. Phys.: Condens. Matter 24, 236002 (2012)

R.F. Bishop et al., J. Phys.: Condens. Matter 25, 306002 (2013)

The full J1–J2–J3 model; J1 > 0, J2 > 0, J3 > 0

Reference

P.H.Y. Li et al., PRB 86, 144404 (2012)
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J1–J2–J3 Model on the Honeycomb Monolayer (s = 1
2
)

the classical (s → ∞) J1–J2–J3 model on the monolayer

honeycomb lattice is most frustrated at the classical

tricritical point (J2/J1 = 1
2 , J3/J1 = 1

2) at which three

phases (Néel, striped and spiral-I) meet =⇒
let us restrict ourselves initially, for illustrative reasons, to

study the model along the line J3 = J2 ≡ αJ1

for J1 > 0, at the point α = 1
2

there is a classical phase

transition from a non-degenerate Néel phase to an infinitely

degenerate family of GS phases (from which the striped

phase is selected by quantum or thermal fluctuation) =⇒
this region should be a fertile hunting-ground for novel

phases for the s = 1
2 quantum case
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RESULTS I: Monolayer with J1 ≡ +1; J3 = J2

We study the case J1 ≡ +1; 0 ≤ J3 = J2 ≡ αJ1 ≤ 1

Notice how we obtain (real) solutions, for a given model

state, only for certain ranges of α ≡ J2/J1, with termination

points shown

The energy and magnetic order parameter results clearly

show the existence of a GS phase intermediate between

the Néel and striped phases

We can test for other orderings by measuring the response

to a field operator F ≡ δÔF added to H, and calculating

e(δ) ≡ E(δ)/N for the perturbed Hamiltonian H + F . We

then measure the response by the susceptibility :

χF ≡ − [∂2e(δ)]/(∂δ2)
∣

∣

δ=0

Honeycomb Monolayers & Bilayers via the CCM NMP17 18/40
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s = 1
2

J1–J2–J3 Model with J3 = J2: GS Energy

(J1 ≡ 1) for the Néel and Striped States

DJJF, RFB, PHYL, JR, CEC / PRB 84, 012403 (2011)
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s = 1
2

J1–J2–J3 Model with J3 = J2 (J1 ≡ 1): Order

Parameter for the Néel and Striped States

DJJF, RFB, PHYL, JR, CEC / PRB 84, 012403 (2011)

 0

 0.05

 0.1
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M
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Let us now test for PVBC order in the intermediate regime →

Honeycomb Monolayers & Bilayers via the CCM NMP17 20/40



INTRODUCTION

RESULTS

SUMMARY

Results on the Honeycomb Monolayer

Results on the Honeycomb Bilayer

s = 1
2

J1–J2–J3 Model with J3 = J2: 1/χp versus J2

(J1 ≡ 1) for the Néel and Striped States

DJJF, RFB, PHYL, JR, CEC / PRB 84, 012403 (2011)

 0
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Néel

striped
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m → ∞, χ
m → ∞, 1/χ

 0

 0.1

 0.2

 0.3

 0.4
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 0.3  0.35  0.4  0.45

Right: The perturbations (fields) F = δ Ôp for the plaquette susceptibility χp . Thick (red) and thin (black)
lines correspond respectively to strengthened and weakened NN exchange couplings, where

Ôp =
∑

〈i,j〉 aij si · sj , and the sum runs over all NN bonds, with aij = +1 and −1 for thick (red) and thin

(black) lines respectively.

LSUB∞ uses: χ
−1
p (m) = x0 + x1m−2 + x2m−4 (to extrapolate LSUBm)
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Intermediate Discussion

The energy and order parameter results clearly show:

Néel ordering persists for J2

J1
≡ α < αc1

≈ 0.47

Striped ordering exists only for α > αc2
≈ 0.60

PVBC ordering appears to exist for αc1
< α < αc2

compared to the direct classical phase transition between

the Néel and striped AFM phases at α = 0.5

These results are confirmed from calculations of

∆, triplet spin gap

ρs, spin stiffness coefficient
χ, zero-field, uniform transverse magnetic susceptibility

Reference

R.F. Bishop, P.H.Y. Li et al., PRB 92, 224434 (2015)

– and see Appendix for details
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Completion of Phase Diagram

We can also investigate the case J1 ≡ −1 to examine the

other boundary of the striped AFM phase

Finally, we can also investigate the case J1 ≡ 1 but with

J2 < 0 to examine the other boundary of the Néel AFM

phase

The classical FM state is also an eigenstate of the

quantum Hamiltonian. Its GS energy is given by
Ecl

FM

N
= s2

(

3
2
J1 + 9

2
J2

)

Honeycomb Monolayers & Bilayers via the CCM NMP17 23/40
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s = 1
2

J1–J2–J3 Model with J3 = J2: GS energy

(J1 ≡ −1) vs J2 for the Striped and FM States

PHYL, RFB, DJJF, JR, CEC / PRB 85, 085115 (2012)

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0  0.2  0.4  0.6  0.8  1

E
/N

J2

FM striped

J1=−1 : LSUB6
J1=−1 : LSUB8

J1=−1 : LSUB10
J1=−1 : LSUB12

ED : J1 = −1
Ecl

FM/N
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0  0.2  0.4  0.6  0.8  1

E
/N

 (
LS

U
B∞

)
J2

FM striped

J1 = −1 : LSUB∞
J1 = +1 : LSUB∞

Ecl
FM/N

(a) LSUBm; m = {6, 8, 10, 12} & ED (b) LSUB∞

NOTE: Curves with symbols refer to the case J1 ≡ +1, for comparison

There is clear evidence for either

a direct first-order transition between the striped and FM phases at α ≈ −0.10, or

an intervening phase in the very narrow range −0.12 . α . −0.10

(c.f., the classical case of an intervening spiral phase in the larger range − 1
5

< α < − 1
10

)
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s = 1
2

J1–J2–J3 Model with J3 = J2: GS Energy

(J1 ≡ 1; J2 < 0) for the Néel and Striped States

RFB, PHYL / PRB 85, 155135 (2012)
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There is clear evidence for a direct first-order phase transition between the Néel and FM phases at
α = −1.17 ± 0.01 (c.f., the classical value α = −1)
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s = 1
2

J1–J2–J3 Model (J3 = J2): Full Phase Diagram

RFB, PHYL / PRB 85, 155135 (2012)

J2

J1

α=J2/J1

Spiral

Spiral-II

Striped

AFM

FM

Néel

AFM

0.5

-1

-0.1

-0.2

J1

α=J2/J1

~ 0
.6

0

~ 0.47PVBC

~ -0.12

~ -0.10

Spiral

Spiral?

Striped

AFM

FM

Néel

AFM

J2

~ -1.17

(a) Classical (s → ∞) (b) s = 1
2

The transition from Néel to PVBC order is a continuous (and hence deconfined) one

The transition from PVBC to striped order is a first-order one

The transitions from striped and Néel AFM order to FM order are both first-order ones
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s = 1
2

J1–J2–J3 Model: Phase Diagram

(J1 ≡ 1; 0 ≤ J2 ≤ 1, 0 ≤ J3 ≤ 1)

PHYL, RFB, DJJF, CEC / PRB 86, 144404 (2012)
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NOTE: c.f., the classical (s → ∞) model has Néel, striped and spiral phases only, with phase boundaries shown by

the light grey lines (dashed for continuous transitions and solid for first-order transition)
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J1–J2–J3–J⊥
1 Model on the Honeycomb Bilayer Lattice

J1–J2–J3–J⊥
1

model on the honeycomb bilayer lattice (i.e., all bonds of
Heisenberg type) – now 4 sites per unit cell: 1A, 2A, 1B , 2B as shown

We’ll look at the case with s = 1
2

spins (viz., the most quantum case)

H = J1

∑

〈i,j〉,α

si,α·sj,α+J2

∑

〈〈i,k〉〉,α

si,α ·sk,α+J3

∑

〈〈〈i,l〉〉〉,α

si,α ·sl,α+J⊥
1

∑

i

si,A·si,B

(where α = A,B labels the two layers, and set J1 ≡ 1)

A

1B

2B

1A

2

J
J3

1J
2

- - - - = J⊥
1

: NN interlayer bond on both layers α = A,B
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J1–J2–J3–J⊥
1 Model on the Honeycomb Bilayer (s = 1

2
)

We have investigated several special cases for this model

Results include

The case when J3 = J2 ≡ αJ1 > 0; J1 > 0, J⊥

1 ≡ δJ1 > 0,
for which we have investigated the stability of the Néel and

striped phases in the α–δ plane

Reference

R.F. Bishop and P.H.Y. Li, unpublished (2017)

The case when J3 = 0 (i.e., the J1–J2–J⊥

1 model);

J1 > 0, J2 ≡ κJ1 > 0, J⊥

1 ≡ δJ1 > 0, for which we have
investigated the stability of the Néel phase in the κ–δ plane

Reference

R.F. Bishop and P.H.Y. Li, eprint arXiv:1611.03287 (2016)
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Limiting Cases

limiting bond cases

J⊥

1 = 0: two uncoupled honeycomb monolayers

J⊥

1 → ∞: with finite J1, J2, J3; NN interlayer pairs form

spin-singlet dimers =⇒
GS is a nonclassical interlayer dimer valence-bond crystal

(IDVBC),

E

N
−−−−−→
J⊥

1
→∞

E IDVBC

N
= −

1

2
s(s + 1)J⊥

1

(s = spin quantum number)
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RESULTS II: Bilayer with J1 ≡ +1; J3 = J2

We study the case J1 ≡ +1; 0 ≤ J3 = J2 ≡ αJ1 ≤ 1;

J⊥
1 ≡ δJ1 ≥ 0

As before for the monolayer we obtain real solutions, for a

given model state (i.e., Néel or striped), only for certain

regions in the α–δ phase space

We have calculated E/N, M as before
We have also calculated

the triplet spin gap ∆ (i.e., the excitation energy from the

GS to the lowest-lying s = 1 excited state)

the zero-field uniform transverse magnetic susceptibility, χ
[i.e., put system in a transverse magnetic field h, in units

where gµB/~ = 1, and calculate

χ(h) = − 1
N

d
2E/dh2; χ ≡ χ(0)]

Honeycomb Monolayers & Bilayers via the CCM NMP17 32/40



INTRODUCTION

RESULTS

SUMMARY

Results on the Honeycomb Monolayer

Results on the Honeycomb Bilayer

s = 1
2

J1–J2–J3–J⊥
1 Honeycomb Bilayer Model with

J3 = J2 (J1 ≡ 1): Order Parameter for the Néel State

RFB, PHYL / unpublished (2017)

δ ≡ J⊥
1 /J1; α ≡ J3/J1(= J2/J1)
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M

δ

α=0.2, Néel
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−0.1
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δ

α=0.45, Néel

LSUB2
LSUB4
LSUB6
LSUB8

LSUB10
LSUB∞(1)
LSUB∞(2)

NOTE: LSUB∞(i) extrapolations are based on LSUBm data sets with

m = {2, 6, 10} for i = 1

m = {4, 6, 8, 10} for i = 2
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s = 1
2

J1–J2–J3–J⊥
1 Honeycomb Bilayer Model with

J3 = J2 (J1 ≡ 1): Order Parameter for the Striped State

RFB, PHYL / unpublished (2017)

δ ≡ J⊥
1 /J1; α ≡ J3/J1(= J2/J1)
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NOTE: LSUB∞(i) extrapolations are based on LSUBm data sets with

m = {2, 6, 10} for i = 1

m = {4, 6, 8, 10} for i = 2
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s = 1
2

J1–J2–J3–J⊥
1 Honeycomb Bilayer Model with

J3 = J2 (J1 ≡ 1): Extrapolated Order Parameter for the

Néel and Striped States

RFB, PHYL / unpublished (2017)

δ ≡ J⊥
1 /J1; α ≡ J3/J1(= J2/J1)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.5  1  1.5  2

M

δ

Néel
α=0.00

0.10

0.20

0.30

0.35

0.40

0.45

0.47

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.5  1  1.5  2  2.5

M

δ

striped
α=1.00

0.80

0.70

0.62

0.60

0.58

0.56

NOTE: LSUB∞ extrapolations are based on LSUBm data sets with m = {2, 6, 10}
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Results on the Honeycomb Bilayer

s = 1
2

J1–J2–J3–J⊥
1 Model: Phase Diagram

(J3 = J2 ≡ αJ1 > 0; J⊥
1 ≡ δJ1 > 0; J1 ≡ 1)

RFB, PHYL / unpublished (2017)

δ

α

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

Néel striped

paramagnet

NOTE:

LSUB∞ extrapolations are based on LSUBm data sets with m = {2, 6, 10}

The red cross (×) symbols and the green plus ( +) symbols are points at which the extrapolated GS
magnetic order parameter M for the Néel and striped phases vanishes, for specified values of δ and α,
respectively
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Results on the Honeycomb Bilayer

Discussion

Both the Néel and striped AFM phases exhibit reentrant

regimes

The phase boundaries of the two quasiclassical AFM

phases exhibit a prototypical avoided crossing behaviour

The paramagnetic regime is likely to contain a mixture (at

least) of phases with IDVBC order and PVBC order in both

layers separately
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Summary

In conclusion, we know of no more powerful nor more

accurate method than the CCM for dealing with these

strongly correlated and highly frustrated 2D spin-lattice

models of quantum magnets, such as the honeycomb

examples used here for an illustration

By now, we have used the CCM for many other spin-lattice
models. Some other typical examples are:

the J1–J2 model on the Union Jack lattice
the J1–J2 model on the checkerboard lattice

other similar depleted J1–J2 models on the square lattice
other models that interpolate between various lattices, e.g.,

(a) kagome-triangle; (b) kagome-square;

(c) square-triangle; (d) hexagon-square

There are now & 125 papers using the CCM for spin

lattices
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For Further Reading

Some references for the CCM methodology and applications
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(1987)

R. F. Bishop, Theor. Chim. Acta 80, 95 (1991)

R. F. Bishop, in Microscopic Quantum Many-Body Theories

and Their Applications, (eds., J. Navarro and A. Polls),

Lecture Notes in Physics Vol. 510, Springer-Verlag, Berlin

(1998), 1

D. J. J. Farnell and R. F. Bishop, in Quantum Magnetism,

(eds., U. Schollwöck, J. Richter, D. J. J. Farnell and R. F.

Bishop), Lecture Notes in Physics Vol. 645,

Springer-Verlag, Berlin (2004), 307
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Additional Results for the Monolayer

s = 1
2

J1–J2–J3 Model with J3 = J2 ≡ αJ1 (J1 > 0):
Triplet Spin Gap

RFB, PHYL, OG, JR, CEC / PRB 92, 224434 (2015)

 0
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∆/
J 1

α

Néel striped

LSUB6
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LSUB10
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LSUB∞ uses: ∆(m) = d0 + d1m−1 + d2m−2 (to extrapolate LSUBm)
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Additional Results for the Monolayer

s = 1
2

J1–J2–J3 Model with J3 = J2 ≡ αJ1 (J1 > 0):
Spin Stiffness Coefficient

RFB, PHYL, OG, JR, CEC / PRB 92, 224434 (2015)

Impose a twist θ per unit length (d ≡ honeycomb lattice spacing) to a
quasiclassical state
E(θ)

N
= E(θ=0)

N
+ 1

2
ρsθ2 + O(θ4)

ρs = spin stiffness coefficient

 0
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ρ s
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1d

2 )

α

Néel striped
LSUB6
LSUB8

LSUB10
LSUB∞
classical

LSUB∞ uses: ρs(m) = s0 + s1m−1 + s2m−2 (to extrapolate LSUBm)
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Additional Results for the Monolayer

s = 1
2

J1–J2–J3 Model with J3 = J2 ≡ αJ1 (J1 > 0):
Zero-Field Transverse Magnetic Susceptibility

RFB, PHYL, OG, JR, CEC / PRB 92, 224434 (2015)

Put zs-aligned system in a transverse magnetic field h = hx̂s (in units where
gµB/~ = 1): H → H(h) = H(0) − h

∑
i sx

i
E(h)

N
= E(h=0)

N
− 1

2
χh2 + O(h4)

χ = zero-field, uniform, transverse magnetic susceptibility
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Additional Results for the Monolayer

s = 1
2

J1–J2–J3 Model with J3 = J2 ≡ αJ1 (J1 > 0):
Discussion

The extrapolated curves for ∆ show clear evidence of a

gapped state between the Néel and striped phases (i.e.,

consistent with our previous identification of a PVBC

intermediate state)

Points where ρs → 0 are clear signals of a magnetic phase

losing its stability

Points where χ → 0 are clear signals of the opening up of

a gapped state (c.f., the classical transition from Néel to

striped)

Each of the curves for ∆, ρs and χ yields corresponding

QCPs to those found from the previous curves for M
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