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Outline of my talk

Importances of exit channel fluctuations in reaction branching ratios



I would like an understanding of fission dynamics, based on a 
nucleonic Hamiltonian.

Motivation

235U(n,f) Text

En < D En > D



Spectrum of models 

Only Guet et al.  and Bulgac et al. dynamics relate to the nucleonic
Hamiltonian.

a)  Fong, PR 102 434 (1956)
d)  Lemaitre, PRC 92 034617 (2015)
f)   Randrup & Moller, PRL 106 132503 (2011)

b) Bjornholm & Lynn, RMP 52 725 (1980)
c) Goutte, PRC 71 024316 (2005)
e) Bernard, PRC 84 044308 (2011)
g) Bulgac, PRL 
h) Bouland, PRC 88 054612 (2013)



The transmission coefficient, a key concept.

Bohr-Wheeler  (1939) �F (E) =
1

2⇡⇢

X

c

Tc(E)

Hill-Wheeler (1953) T (E) =

1

1 + exp(2⇡(EB � E)/~!)
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FIG. 1. Point-contact resistance as a function of gate volt-
age at 0.6 K. Inset: Point-contact layout.

FIG. 2. Point-contact conductance as a function of gate
voltage, obtained from the data of Fig. 1 after subtraction of
the lead resistance. The conductance shows plateaus at multi-
ples of e /xh.

pinched off at Vg =—2.2 V.
We measured the resistance of several point contacts

as a function of gate voltage. The measurements were
performed in zero magnetic field, at 0.6 K. An ac lockin
technique was used, with voltages across the sample kept
below kT/e, to prevent electron heating. In Fig. 1 the
measured resistance of a point contact as a function of
gate voltage is shown. Unexpectedly, plateaus are found
in the resistance. In total, sixteen plateaus are observed
when the gate voltage is varied from —0.6 to —2.2 V.
The measured resistance consists of the resistance of the
point contact, which changes with gate voltage, and a
constant series resistance from the 2DEG leads to the
point contact. As demonstrated in Fig. 2, a plot of the
conductance, calculated from the measured resistance
after subtraction of a lead resistance of 400 0, shows
clear plateaus at integer multiples of e /&A. The above
value for the lead resistance is consistent with an es-
timated value based on the lead geometry and the resis-
tivity of the 2DEG. We do not know how accurate the
quantization is. In this experiment the deviations from
integer multiples of e /zh might be caused by the uncer-
tainty in the resistance of the 2DEG leads. Inserting the
point-contact resistance at V~= —0.6 V (750 0) into
Eq. (1) we find for the width W,„=360nm, in reason-

able agreement with the lithographically defined width
between the gate electrodes.
The average conductance increases almost linearly

with gate voltage. This indicates that the relation be-
tween the width and the gate voltage is also almost
linear. From the maximum width W,„(360 nm) and
the total number of observed steps (16) we estimate the
increase in width between two consecutive steps to be 22
nm.
We propose an explanation of the observed quantiza-

tion of the conductance, based on the assumption of
quantized transverse momentum in the contact constric-
tion. In principle this assumption requires a constriction
much longer than wide, but presumably the quantization
is conserved in the short and narrow constriction of the
experiment. The point-contact conductance G for ballis-
tic transport is given by "

G =e NpW(It/2m)( [ k„~ ).

The brackets denote an average of the longitudinal wave
vector k, over directions on the Fermi circle, N p
=m/eh 2 is the density of states in the two-dimensional
electron gas, and W is the width of the constriction. The
Fermi-circle average is taken over discrete transverse
wave vectors k» = ~ nz/W (n =1,2, . . . ), so that we can
write

T

&Ik. l&= J d'krak, )&(k—kF) g 6' k»—
7C F 8', -) 8' (3)

Carrying out the integration and substituting into Eq. (2), one obtains the result

N,

(4)

where the number of channels (or one-dimensional subbands) N, is the largest integer smaller than kFW/x. For

849

Well-known in mesoscopic physics as the Landauer 
formula for quantized conductance:
(See Bertsch, J. Phys. Condens. Matter 3 373 (1991).

B.J. van Wees, et al. Phys. Rev. Lett. 60 848 (1988).

G = 1/R =
e2

2⇡~
X

c

Tc

Wigner, Eyring  (1930-1925)  transition channels
Weisskopf   (1937)   detailed balance (microscopic reversability)



Transport through quantum dots (resonances) 

Tres(E) =
�R�L

(E � Eres)2 + (�R + �L)2/4

See Alhassid, RMP 72 895 (2000)

Maximum T=1, when left and
right widths are equal.



States or Channels?

Remarks:
1)There is (as yet) no way to connect the states to the 
channels with the nucleonic interaction.

2)Transport through intermediate states is well established 
in mesoscopic physics.

3) Meager evidence for collectivity in the shape degree of 
freedom near the ground state.

4) Are there any observable consequences? 



Can we make a predictive theory through the CI approach?

Separate configuration space into interacting subspaces q.

Ĥ = ê+ v̂ =
X

i

✏ia
†
iai + 1/4

X
vijkla

†
ia

†
jalak

Ĥ =
X

q

V̂ (q) +
X

q

êq +
X

q

(v̂q + v̂q,q+1)

Remarks:
1) How can we systematically define a discrete basis?   (see arXiv:1611.09484,
                                                                                          PRL 113 262503 )
2) DFT gives our best theory of V(q).    (Skyrme,.. , hybrid H?)
3) e_q  must give a good account of level density  (consistent with 2?)
4) v_q can be postponed by invoking the GOE.
5) pairing interaction in v_(q,q+1) is important at low excitation.
6) At high excitation, v_(q,q+1) should have a Porter-Thomas parameterization.



The Mazama code:  implementing a discrete basis for neutron-induced reactions.

The Hamiltonian is set up in stages, each one connects only with 
its neighbors.
-Entrance channel
-Internal stage I
-internal stage 2
 -...

Entrance channel:  continuum neutron wave function represented on an r-space
mesh.
Woods-Saxon potential: V (ri) =

V0

1 + exp((ri �R)/a) No imaginary W!

black:  V
blue:  phi_n.real
red:  phi_n.imag



Other stages are described by a spectrum of levels with space either uniform or 
following the GOE ensemble.  

An imaginary contribution  Gamma/2 may be
added to the energies to represent decay modes other than coupling
to neighboring stages.
Interactions between levels in neighboring stages are taken from a Porter-Thomas
distribution (i.e. Gaussian-distributed).  

m1=numpy.random.randn(N,N)
m2=m1+numpy.transpose(m1)
eigs,U = numpy.linalg.eigh(m3)



Definition of compound nucleus
   1) level spacing follows GOE spectrum
   2) matrix elements               follow Porter-Thomas distribution

The Hauser-Feshbach formula

�↵,� =
(2l + 1)⇡

k2
�↵��

�2
(prefactor modified by symmetries)

P (h↵|v|xi) = exp(�v

2
/2v

2
0)

h↵|v|xi



Double-barrier dynamics

Simple barrier modelHauser-Feshbach

More transition statesHelvetica  justify left

Examples of models that can be analyzed with Mazama.



How far can we get with the simpler barrier model?

h�n

D
i = 10�4

✓
En

1eV

◆1/2

�� ⇡ 35 meV �F ⇡ 100 meV ↵�1 ⇡ 2.8

Single transition state

Average low-energy properties of 235U(n,..) : 

Fluctuation mFluctuation m

↵�1
sts ⇡ 0.9 Hauser-Feshbach violation!

Blue:  capture; red: fission



Adding transition states

↵�1
3ts ⇡ 3

Blue:  capture; red: fission



Two sources of Hauser-Feshbach violation
Bertsch and Kawano,  arXiv:1701.00276 (2017)

1)  well-known in the evaluator community--”width fluctuation 
correction” 

2) In principle known, but forgotten:   T<1.  Need to solve explicitly  
for the S-matrix:

Text

Moldauer, Phys. Rev. C 14 764 (1976)
T. Kawano, et al., Phys. Rev. C 92 044617 (2015).

⌧
�↵

�↵ + �0

�

↵

�⌧
�0

�↵ + �0

�

↵

<

⌧
�↵

�0

�

↵

K = ⇡�̃T 1

E �H
�̃ S =

1� iK

1 + iK



Future

Fluctuations:
  1.  When is Porter-Thomas violated?

Claim in PRL 115 052501 (2015):   properties of the entrance
channel can produce violations of otherwise statistical
distributions.

2.  Validity of Ericson’s treatment of compound-nucleus fluctuations

C(✏) =

⌧
�(E)�(E + ✏)

�̄2

�

Width of CN states

Autocorrelation function

C(✏) = 1 +
1

Nc

1

1 + (✏/�̄)2

C(0)� 1 =
1

N

1

1 + (EB/⇡�̄)
E_B>> Gamma

P. Fessenden, et al., Phys. Rev. Lett. 15 796 (1965).





Some of the original data   235U(n,f)
Many thanks to David Brown (BNL) for tracking down the data!



Fluctuation measures

2.  Fourier transform

Fluctuation measuresFluctuation measures

Measures CN lifetimes in overlapping resonance region.

1.  Autocorrelation function   

Ericson, Ann. Phys. 23 390(1963).
Richter, in Nuclear Spectroscopy and Reactions, ed. Cerny

C(�E) =

R E1

E0
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235U(n,f) 10 eV - 30 eV  

Examples of autocorrelation functions

Moore et al  10 keV - 25 keV

�2 = 26
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There is good evidence for fluctuations in (n,f) cross section on the 
scale of 1 keV;  amplitude is +/- 15-20%.

Conclusion on 12.5 - 15.0 keV data:

There is no evidence for fluctuations on a narrower energy scale.

A  sensitive observable for barrier-related fluctuations:

↵�1 =
�F

��

But the data is not precise enough:



1.  Fluctuations are present above the barrier.

2.  They cannot be explained by channel openings.

3. A discrete-basis formalism offers promise to describe them. 

4. The compound-nucleus ansatz can seriously overestimates
the channel conductance.

5. We are still far from a predictive theory anchored to the 
nucleon-nucleon interaction.

Conclusions
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hypotheses involving weakly excited states which will
fit the data. We simply cannot say anything about them.
Beginning with the case of the data from two neutron

energies, E„=200 and 300 keV, and two accessible
states of the transition nucleus, we found, after
extensive searching, that we could reject all hypotheses
not assigning values of —,'+ and ss+ for the E, m of
these two states. A few sample fits to the angular
distributions are shown in Fig. 5. We found that the
data at 400 and 500 keV could be adequately described
by adding a third accessible state in the transition
nucleus and assigning values of (X,m) =as—.The fits
to the 400- and 500-keV angular distributions and the
total fission cross section" are shown in Figs. 6 and 7.

Detailed calculations revealed that the values of Ep
and Ace given in Table III should be regarded as
uncertain to at least &50—100 keV. The partial hssion
cross sections are shown in Fig. 8.
Further attempts to fit the data from E„=200keV

to E„=843 keV by adding a fourth and fifth accessible
state in the transition nucleus were unsuccessful. The
best attempts at fitting this data are shown in Figs. 9
and 10, although it should be understood that these are
not satisfactory Gts to the data when judged by a X'
criterion. About all that can be said is that there must
be at least one more accessible state of the transition
nucleus with E=—,'coming into play before If' =843
keV.
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Fro. 9. Fission-fragment angular distributions for the U'"(e,f) reaction at seven incident neutron energies. The points are the experi-
mental data and curves represent our "best fits" with four and jive accessible states of the transition nucleus. The parameters for these
best fits are as follows: four states—,'+, 600, 625; -f+, 375, 275; $—,550, 500; and q—,675, 300; five states—~+, 600, 625; $+, 375,
275; —,'—,550, 300; —',—,750, 150; and ~—,725, 400. Eo and bc' for each state are given in keV.

"W. G. Davey, Nucl. Sci. Engr. 26, 149 (1966).

A. Behkami, et al., Phys.
 Rev. 171 1267 (1969).

1)  (gamma,f)  well understood at threshold  with 
opening K-pi identified channels. (Little K-mixing 
at E = 5.5 MeV)
2).  (X,f) well understood at higher energy by
thermal distribution of K-pi channels.

3).   Not so clear at energies just above the 
barriers.

Other fluctuations:  angular distributions
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On the smallest energy scale, compound nucleus statistics with D=0.45 eV

Do we understand the fluctuations in (n,f) cross sections?

235U + n  --> fission,  resolved into J= 3 vs. J=4

M.S. Moore, et al., Phys. Rev. C 18 1328 (1978).



On the 100 eV scale, level density of class II states

R.B. Perez, et al., Nuclear Science and Engineering 55 203 (1974)

235U + n  --> fission



But what about fluctuations on a 1 keV scale?

J=4J=3



Channels or Resonances?

W =
1

2⇡~⇢I

X

c

TcBohr-Wheeler framework

Tc(E) ⇡ 1

1 + exp(2⇡(Bc � E)/!c)

Typical channel

Typical resonance Tr =
�R�L

E2
b + (�R + �L)2/4



Questions:
1. How to calculate transmission coefficients at the channel 
interface?
2. What is the bandwidth of the channels?
3. How to calculate mixing between channels?

Answers from the literature:
1. None
2. None
3. R. Bernard, H. Goutte, D. Gogny and W. Younes,  Phys.  Rev. C 84 044308 (2011)

Problems with the channel picture:
1.  Nonorthogonality
2.  Separation of collective and intrinsic energy scales  (unlike the Born-Oppenheimer
     separation in chemistry).



My picture

E 

Q Q 

(a) (b) 
Start with a discrete
representation of the
many-body wave functions



Diffusive limit
Resonance-mediated conductance

limit

Tr =
�R�L

E2
b + (�R + �L)2/4

See:
 Bertsch,   arXiv:1407.1899.pdf  (2014)
  Alhassid,  RMP 72 895 (2000)

@P

@t
= D

@2P

@q2

D = 2⇡⇢(E)(q↵ � q�)2h↵|v|�i2



Advantages of  a discrete basis representation

--Different dynamical limits are accessible
       --channel limit
       --diffusive limit
       --resonance-mediated conductance limit

--Close connection to microscopic Hamiltonians

--Conceptual bridge to condensed matter theory (quantum transport)

--Well-known CI computational methods are applicable



Possible implementation:  the axial basis
Instead of using a generator coordinate to distinguish 
states, use the filling of orbitals by the K quantum number.

Example
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H =
X

"ia
†
iai +

X
vij,kla

†
ia

†
jalak

Example:  partition-defined states in 162Dy

H from Y. Alhassid, et al.  PRL 101 082501 
(2008). 

Construct the basis by HF minimization 
constraining only the K partition.
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Comparison of GCM with discrete basis construction for the
excited band in 40-Ca.

The spectrum

Constructing the 
K-pi constrained
state



Comparison of GCM with discrete basis construction for the
excited band in 40-Ca.
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K-pi-constrained method might be more reliable to find the PES.
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Green:  Class I  gs  occupancy one unit higher
Red:      Class II gs  occupancy one unit higher
Blue:     Class II gs   occupancy two units higher

236U (Möller)

The landscape for U-236 fission, from class I to class II states



Wave functions calculated by the code HFBaxial.   See
Rodriguez-Guzman and L.M. Robledo, PRC 89 054310 (2014).

The hopscotch fission path for 236U

Text



A completely different approach to dynamics:
time-dependent mean-field theory

Induced Fission of 240Pu within a Real-Time Microscopic Framework

Aurel Bulgac,1 Piotr Magierski,1,2 Kenneth J. Roche,1,3 and Ionel Stetcu4
1Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA

2Faculty of Physics, Warsaw University of Technology, ulica Koszykowa 75, 00-662 Warsaw, Poland
3Pacific Northwest National Laboratory, Richland, Washington 99352, USA

4Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 2 November 2015; revised manuscript received 18 January 2016; published 25 March 2016)

We describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission
barrier to full scission and the formation of the fragments within an implementation of density functional
theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with
properties similar to those determined experimentally, while the fission dynamics appears to be quite
complex, with many excited shape and pairing modes. The evolution is found to be much slower than
previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully
nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included
(unlike adiabatic treatments with a small number of CDOF).

DOI: 10.1103/PhysRevLett.116.122504

Nuclear fission has almost reached the venerable age of
80 years [1,2], and it still lacks an understanding in terms of
a fully quantum microscopic approach. This is in sharp
contrast to the theory of superconductivity, another remark-
able quantum many-body phenomenon, which required
less than half a century from its discovery in 1911 [3] until
the unraveling of its microscopic mechanism in 1957 [4].
Bohr [5–8] realized that the impinging low-energy neutrons
on uranium targets leading to the nuclear fission proceed
through the formation of a very complex quantum state, the
compound nucleus, which has a very long lifetime. In a
compound state the initial simple wave function of the
impinging neutron is fragmented into a wave function of
the nucleonþ nucleus system with approximately one
million components, as level density suggests [9]. In this
respect this is similar to a particle in a box with a very small
opening, consistent with the long lifetime of a compound
nucleus state. Eventually, because of the interplay of the
Coulomb repulsion between the protons and the nuclear
surface tension, the nuclear shape evolves like a liquid
charged drop and the compound nucleus reaches the
scission configuration, leading predominantly to two
emerging daughter nuclei. It was a great surprise when,
in the 1960s, it was realized that the independent particle
model proved to play a major role in the fission dynamics.
At that time it became clear that the independent particle
motion of nucleons and shell effects play a remarkable role
and lead to a very complex structure of the fission barrier
[10,11] and to a potential energy surface much more
complicated than that suggested by a liquid drop model
considered until then. On its way to the scission configu-
ration a nucleus has to overcome not one, but two—the
double-humped fission barrier—and sometimes even three
potential barriers [10,11]. As in low-energy neutron
induced fission, the excitation energy of the mother nucleus

is relatively small, the compound nucleus has a very slow
shape evolution, and it was reasonable to assume that the
shape evolution is either damped or overdamped. Since the
presence of shape isomers has been unequivocally dem-
onstrated, experimentally and theoretically, the dominant
phenomenological approach to fission dynamics based on
compound nucleus ideas, liquid drop, shell corrections, and
the role of fluctuations described within Langevin and
statistical approaches [12–21] has been born.
It became clear over the years that the fermion pairing

and superfluidity play a critical role in nuclear fission,
though in a vastly different manner than in the case of
superconductivity [22,23]. Pairing correlations (either
vibrations or rotations) are ubiquitous in nuclei [24], and
they are expected to play a leading role in the nuclear shape
dynamics [22,23,25,26]. The shape evolution of nuclei
appears somewhat surprising at first sight since, typically, a
nucleus is stiffer for small deformations and rather soft for
large deformations. Hill and Wheeler [7] had the first
insight into the origin of this aspect of nuclear large
amplitude collective motion: the jumping from one diabatic
potential energy surface to another and the role of Landau-
Zener transitions. The most efficient microscopic mecha-
nism for shape changes is related to the pairing interaction.
The difficulty of making a nucleus fission in the absence of
superfluidity was illustrated within an imaginary time-
dependent Hartree-Fock approach treatment (an instanton,
in quantum field theory parlance) of the fission of 32S into
two 16O nuclei [27]. The initial and final states have an
obvious axial symmetry, with occupied single-particle m-
quantum states "1=25;"3=22;"5=21 and "1=26;"3=22

for protons and neutrons, respectively, in the mother and
daughter nuclei, where the superscript indicates the number
of particles with the corresponding m-quantum number. In
the absence of short-range pairing interactions, particularly
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2. Calculate 

3. Estimate diffusion coefficient   

1.  Code for partition-constrained DFT (Skyrme or Gogny)

Near-term goals

⇢(q, E)

D(q, E)





The interaction between configurations

A qualitative result:

Shows that the interaction becomes stronger with excitation and thus
the dynamics approach the diffusive limit.

B.W. Bush et al., Phys. Rev C 45 1709 (1992).

See A. Arima and S. Yoshida, Nucl. Phys 12 139 (1959).
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A well-studied model has four stages beyond the entrance 
channel:
I       usual compound nucleus
A      first barrier
II      second well
B      second barrier.

Parameters:
-Woods-Saxon potential for entrance channel
-E_min, E_max,  D= <Delta E>, Gamma for each stage
- <i|v^2Ij> for each stage-stage coupling.

Some of the parameters we know well, eg. the Woods-Saxon
parameters,  D and Gamma_gamma for the compound nucleus.

Can the other parameters be plausibly tuned to fit the 1 keV-
scale (n,f) fluctutations?  If so, is there some combination that
is well-constrained by data?



Can one define a discrete basis around the barrier top?
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DFT (Gogny) for 236U between the first and second 
minimum.   Solid line:  HF;  dashed line: HFB.


