

http://aruna.physics.fsu.edu

10 members

~200 users

Association for Research at **University Nuclear Accelerators**

ARUNA-

Operation and Budgets of ARUNA Laboratories

- Three facilities are DOE Centers-Of-Excellence: Texas A&M Cyclotron, TUNL and U. Washington
- The others are funded through DOE or NSF through the Nuclear Physics core program.
- The ARUNA facilities receive grant funding in excess of \$15M
- The hosting universities almost everywhere provide substantial support, which over-matches the operations cost in the form of staff positions, utilities and other contributions

Facilities and Research Highlights The John D. Fox Accelerator Laboratory

- 9 MV Tandem + 8 MV Linac
- Beam Energy profile

- In-flight radioactive beams with Resolut
- Clover HPGe γ-array (TR1 → TR2)
- New: Super-Enge Split Pole Spectrograph

Tandem: Pelletron-charged 9 MV FN-tandem Linac: 14 Superconducting cavities Niobium on Cu, Split-Ring (Atlas-design)

- SE-SPS installed at FSU, commissioning Fall 2017 LSU-FSU collaboration
- High resolution, large acceptance (12.8 msr)
- SABRE: Silicon detector array for coincident particle spectroscopy
- Spectroscopy of resonances for nuclear astrophysics, nuclear structure in the continuum
- Collaborators welcome

NSID NSID

rp-Process: ²⁰Na Resonances Studied at FSU

- The ¹⁹Ne(p,γ)²⁰Na reaction is the first (p,γ) reaction in rp-process nucleosynthesis.
- Measured (d,n) to resonances with a radioactive beam of ¹⁹Ne at FSU's RESOLUT facility
- 670 keV 1+ (I=0) resonance, at higher energy than reported
- 440 keV 3+ (I=2) resonance with (I=0) excited state proton-branch
- Astrophysical (p,γ) rate is higher than assumed, because of ¹⁹Ne excited state capture
- No "bottleneck" for X-ray bursts
- FSU graduate J. Belarge et al. PRL 117, 182701 (2016)

Undergraduate research at the Fox Lab - Results

Complete spectroscopy of ²¹¹Po via the (α,n) reaction (in press, Phys. Rev. C)

J.R. Cottle (Grinnell College) et al., FSU, MSU/NSCL, ORNL

Edwards Accelerator Laboratory at Ohio University

Beam Swinger Facility

Target chamber

Edwards Accelerator Laboratory at Ohio University

Research Areas: Nuclear Astrophysics, Nuclear Structure, Surface Science, Applied Nuclear Science

Senior Researchers: Carl Brune, Steve Grimes, Tom Massey, Zach Meisel, and Alexander Voinov

Research Highlight: Neutron Transport in Iron

Ph. D. project of Sushil Dhakal who graduated in December 2016. A pulsed ~8 MeV source is located in the center of the sphere. Neutron time-of-flight is detected at a distance of 8 m. Experimental results are compared to Monte Carlo simulations using cross section libraries.

Our work indicates the neutron elastic scattering assumed in ENDF/B-VII is about 10% too large.

Facilities and Research Highlights Triangle Universities Nuclear Laboratory

Measurement of polarizabilities via Compton Scattering provides stringent test of calculations that link the effective low-energy description of nucleons to QCD, and Lattice QCD predictions. At HIGS, we are measuring proton and neutron polarizabilities at unprecedented accuracies.

$$\vec{m} = 4\pi \beta_{M1}(\omega) \vec{B}(\omega)$$

The EM self-energy of the nucleon can be related to the measured elastic/inelastic cross sections; Largest source of uncertainty is from B_n B_n (where uncertainty from neutron dominates)

The Compton scattering setup at HIGS to measure proton's spin polarizabilities: Cryogenic target + Nat Array (HINDA)

²H Compton scattering cross section at 65 MeV. Measurement to separate inelastic channel is underway.

Rate for decay by exchange of virtual Majorana neutrinos:

$$\left[t_{1/2}^{(0\nu)}\right]^{1} - G_{1}^{(0\nu)} \left(\frac{\left\langle m_{\beta\beta}\right\rangle}{m_{\epsilon}}\right)^{2} \left(M^{(0\nu)}\right)^{2}$$

QRPA calculations of $(M^{(n\nu)})^2$ assume that the initial and final wavefunctions can be represented as a BCS condensate of the nucleons, an approximation that can be evaluated using two-nucleon transfer reactions

 θ_{cm} (deg)

DWBA calculations performed by Alex Brown (MSU) using FRESCO: Ratio of first 0+ excited state to the ground state transition is consistent with the BCS approximation used in QRPA calculations of the $(M^{(0\nu)})^2$ for $O\nu\beta\beta$ of 76 Ge

20

H+ beam on target: ~5 mA @ 200 keV

(most intense low-energy beam for nuclear astrophysics)

Background reduction via beam pulsing

Spectrometer and detectors fully recommissioned

Upgrades to focal-plane detector:

Fiber readout

Low-noise DL using in-house cremat pre-amps Sub-mm position resolution, robust operation

University of Kentucky Accelerator Laboratory

7-MV Van de Graaff

Nuclear Structure Relevant to Neutrinoless Double-β Decay: Detailed Studies of ⁷⁶Ge and ⁷⁶Se

with the (n,n'γ) Reaction

S. Mukhopadhyay et al., in progress.

- Monoenergetic fast neutrons
- Level Lifetimes by DSAM

Nuclear Level Lifetimes by Doppler-Shift Attenuation following Inelastic Neutron Scattering

- Following neutron scattering, the nucleus recoils.
- The emitted γ rays experience a small Doppler shift.
- Level lifetimes in the femtosecond regime can be determined.

Fast-neutron-induced Background Near the Q value for OvBB

A detailed study of the nuclear structure of 76 Ge via the 76 Ge(n,n' γ)

⁶He β - ν angular correlation at U. of Washington

Y. Bagdasarova¹, K. Bailey², X. Fléchard³, A. Garcia^{1,*}, R. Hong¹, A. Knecht⁴, A. Leredde², E. Liennard³, P. Mueller^{2,*}, O. Naviliat-Cuncic⁵, T. O'Connor², M. Sternberg¹, H.E. Swanson¹, F. Wauters¹

¹University of Washington, ²Argonne National Lab, ³LPC, CAEN, France ⁴PSI, ⁵NSCL, Michigan State University

*Spokepersons

- Goal: measure "little a" to 0.1% in 6He
 - pure Gamow-Teller decay
 - sensitive to tensor couplings
 - simple nuclear and atomic structure
- Laser cooling and trapping to prepare ⁶He source (t ≈0.8 s)
- Detect electron and ⁶Li in coincidence

⁶He Trap/Detector Chamber Scintillator Multi-Wire Chamber Micro-Channel Plate

optical trap

⁶He little-a measurement at U. of Washington

6He Source:

Reliable source of ~10¹⁰ ⁶He's/s in low-background environment
A. Knecht et al. NIM A. 660, 43 (2011)

Laser trapping and detection systems: All systems working after much development.

First physics results:

Measurement of Li-ions charge distribution and comparison with atomic theory. Interesting discrepancies.

Submitted to PRC.

Status:

- Now efficiencies good for determination of little-a at the 1% level within 3 days.
- Presently working on systematic uncertainties.
- Aiming for $\Delta a/a$ <1% in near future.

⁶He little-b measurement at U. of Washington

M. Fertl¹, A. Garcia¹, M. Guigue⁴, P. Kammel¹, A. Leredde², P. Mueller², R.G.H. Robertson¹, G. Rybka¹, G. Savard², D. Stancil³, M. Sternberg¹, H.E. Swanson¹, B.A. Vandeevender⁴, A. Young³

¹University of Washington, ²Argonne National Lab, ³North Carolina State University, ⁴Pacific Northwest National Laboratory

LRP: ...weak decay measurements with an accuracy of 0.1% or better provide a unique probe of new physics at the TeV energy scale, offering discovery potential complementary to muon and electron weak force measurements.

- Goal: measure beta spectrum with high precision to search for "little b" deeper than 10⁻³ in ⁶He.
- Most sensitive experiment ever proposed to search for chirality-flipping interactions.
 Sensitivity more than 1 order of magnitude higher than LHC!

Use Cyclotron Radiation Electron Spectroscopy. Similar to Project 8 setup for tritium decay.

PRECISE TEST OF INTERNAL CONVERSION THEORY

Method:

Measure γ ray and K x rays simultaneously in a single well-calibrated HPGe detector

$$\alpha_{\kappa} \omega_{\kappa} = \frac{N_{\kappa}}{N_{\gamma}} \frac{\epsilon_{\gamma}}{\epsilon_{\kappa}}$$

ω_K, the fluorescence yield, is known from systematics to 0.5%

Example:

Result:

World data for α_{κ} values measured to <2% precision. Our results are in red.

Demonstrates the need to include the atomic vacancy in calculations.

Texas A&M University Penning Trap (TAMUTRAP)

Equilibration Chronometry

Characterizing neutron-proton equilibration with sub-zeptosecond resolution

(450fm/c)

Motivation:

Constrain the nuclear equation of state.

Background:

N-Z equilibration should be directly observable in heavy ion reactions.

One fragment from binary split evolves in time.

Hypothesis:

The composition of the two fragments from a binary split should evolve toward each other with time.

Methods:

NIMROD 4π array.

First measurement of N-Z of both fragments. Fine time resolution from alignment angle.

A. Jedele, et al., Phys. Rev. Lett. 118, 062501 (2017)

Results:

We observe N-Z equilibration as a function of time. Equilibration curve is approximately exponential → First order kinetics Zeptosecond timescale.

Reactions with RIBs Nuclear Astrophysics Active with TIARA

- Indirect measurements of astrophysical radiative capture reactions using (d, p) and (6Li,d) at ~10A MeV.
- Commissioning and stable beam campaign in Fall 2016.

Classical novae	S-process
19 F $(d, p)^{20}$ F	25 Mg(d, p) 26 Mg
23 Na(<i>d</i> , <i>p</i>) 24 Na	²² Ne(⁶ Li, <i>d</i>) ²⁶ Mg

Structure of ¹⁰N

Excitation function for 9C+p elastic scattering

Extraction of Nh (Z = 113) Homolog In³⁺ Using Deep Eutectic Solvents

- Deep eutectic solvents are compounds with tunable chemical properties. Two solids are mixed to create a liquid.
- The slope gives us the speciation.
- DESs are being considered for application to Nh chemistry.

Fig. 1 Chemical structures of compounds used in this work for the preparation of the quaternary ammonium- and menthol-based mixtures (left – hydrogen bond acceptors, right – hydrogen bond donors).

Fig. 3 Effect of aqueous hydrochloric acid concentration on the extraction efficiency of In into quaternary ammonium- and menthol-based hydrophobic mixtures. The solid lines are drawn to guide the eye.

E. E. Tereshatov *et al.*, Green Chem. **18**, 4616 (2016). doi: <u>10.1039/c5gc03080c</u>

Mapping the CNO and NeNa cycles

 12 C(p, γ) 13 N, 14 N(p, γ) 15 O, 15 N(p, γ) 16 O, 17 O(p, γ) 18 F, 20 Ne(p, γ) 21 Na, 23 Na(p, γ) 24 Mg, Future measurements on 14 N(p, γ) 15 O at CASPAR

Closing in on neutron sources

²²Ne(α,n) (via ²⁶Mg(γ,γ'), ²⁶Mg(α,α'), ²²Ne(⁶Li,d) studies); completed Direct measurement of ¹⁰B(α,n), ¹¹B(α,n), ¹³C(α,n) at NSL Future ¹³C(α,n) and ²²Ne(α,n) at CASPAR

Fusion and reactions in late stellar evolution

¹²C+¹⁶O for late stellar evolution and explosive oxygen burning with rebuilt SAND detector,

Future measurement of $^{12}C+^{12}C$ at NSL and $^{20}Ne(\alpha,\gamma)$ at RHINO gas target

• The α p-process in X-ray bursts

Completion of (p,t) studies in the sd-shell at RCNP Osaka for probing the compound nuclei of 18 Ne, 22 Mg, 26 Si, 30 S, 34 Ar, and 38 Ca(α ,p) reactions in preparation for RIB studies.

w Equipment developments

Multi-Reflection-Time-of-Flight mass spectrometer at ANL; Paul trap for

TwinSol

UMass Lowell Radiation Laboratory - Overview

Partha Chowdhury

Andrew Rogers

Kim Lister (emeritus)

100 µA DC beam Sub-ns pulsing Mono-energetic pulsed neutrons via 7 Li(p,n) (goniometer, ToF) Ion microprobe (PIXE and RBS) General purpose

scattering chamber

Collaborators/Users: MIT/UMich/Penn State/GaTech, Yale, PHDS, CapeSym, RMD, Neutron Therapeutics,,...

in-core sample (~1013 n/cm2/s) graphite thermal column (~106 n/cm²/s) digital neutron radiography hot cell, remote manipulators

Peter Bender

Proton microbeam and PIXE

LECM-ANL

Neutron Damage & Recovery: Segmented HPGe

- + Segmented large planar Ge with new contact technology
- Applications in imaging and high count rate capabilities.
- + Neutron damage tests and "repairability" at UMass Lowell accelerator for in-beam physics
- SBIR Phase2 grant with PHDS Co. to design a streamlined cryostat for an array tailored towards "in-beam" spectroscopy of superheavy elements.
- Controlled dose of mono-energetic neutrons from accelerator to induce lattice damage and charge trapping
- In-house annealing to assess robustness of contacts
- Repeat with higher doses to ascertain limits

Fast Neutron Spectroscopy and Deuteron Beams

- 3"x3" + array of sixteen 1" x 1" C⁷LYC scintillators
- Fast neutron detection via 35Cl(n,p) reaction
- 35Cl(n,p) cross-section measurements lacking in databases
- ◆ Large uncertainty in Monte Carlo simulations
- + Directly measure C7LYC efficiency at accelerator
- ◆ Mono-energetic neutrons produced via ⁷Li(p,n)⁷Be reaction
- Neutron production rate via ⁷Be assay (52-day half-life)
- One ⁷Be per neutron, 10% β-decay branch produces 479-keV γ-ray

- Beam tests with ~3 MeV deuterons
- Natural Boron target
- 10,11B(d,n)11C reactions with C7LYC
- Use dual gamma-neutron capability
- In-beam and decay spectra

Union College Ion-Beam Analysis Laboratory (UCIBAL)

- Primary instrument is a 1.1-MV tandem Pelletron Accelerator
- Used in
 - Undergraduate research projects
 - First-Year Seminar in Physics
 - Advanced Laboratory
 - High school outreach
- Users in last 10 years
 - 4 Union College and visiting faculty
 - 250 undergraduate students
 - 153 high school students
 - 54 high school physics teachers

Research in UCIBAL

- Main emphasis on IBA of environmental samples
- Example: Characterization of atmospheric aerosols in the Adirondack Mountains [NIMB 350 (2015) 77]
 - PIXE analysis of airborne particulate-matter (PM) pollution as a function of particle size
 - Large concentrations of S measured in small particles that can travel great distances and contribute to the acid rain problem in the Adirondacks

- 1. ARUNA facilities do first rate science.
- ARUNA facilities provide unique opportunities for new developments and testing that is not possible at big facilities.
- 3. ARUNA facilities attract students and help nuclear science compete for talent at the universities.
- ARUNA facilities are flagships for universities and generate a lot of leverage support.
- 5. Scientists from ARUNA facilities are a major part of the user community of large facilities.
- 6. ARUNA facilities are an indispensable intellectual resource in the field.