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* Neutrinoless Double-Beta Decay
— Why bother?
— Different experiments and detectors
— The MAJORANA DEMONSTRATOR
— LEGEND: Path to a tonne-scale experiment




Neutrino Questions

We have learnt a great deal about neutrinos over the past
two decades. But they continue to surprise us, and many
crucial questions remain.

* |s lepton number a conserved quantity?
* |s the neutrino its own antiparticle (a Majorana particle)?

 Are neutrinos responsible for leptogenesis?
* What is the origin of the neutrino mass?

* What is the neutrino mass ordering (hierarchy)?

 What is the absolute mass scale of neutrinos?

 Are there right-handed (sterile) neutrinos?



Double-Beta Decay

« Second order process

« Can compete only where single
B-decay is energetically forbidden

neutrinoless B €



Double-Beta Decay

Beta decay
Example: n>pt+e +v

Two-neutrino double-beta decay
Example: 2n > 2pT + 2 + 2V
Observed with half-lives ~ 107° — 1021 years

Neutrinoless double-beta decay
Example: 2n > 2p* + 2e°
Not yet observed...

neutrinoless B €



Neutrinoless Double-Beta Decay 9

If observed, Ov(33 decay would: B q\l\‘t
 Demonstrate that lepton number is not & v,

conserved
« Show that neutrinos are Majorana
particles allowed Bp 5
* Provide plausible scenarios for the origin . NI\N&

of the baryon asymmetry of the universe

« Offer a potential mechanism for the very
light masses of neutrinos compared to that
of the charged fermions

* Provide a model-dependent measurement
of the absolute neutrino mass

All of this from a process that has no
neutrinos in either the initial or the final state!

neutrinoless pp €



How can we tell Ov3 from 2vB3?

In 2vB[3, some fraction of the decay energy gets carried by
the neutrinos

But in OvBB, all the decay energy must go to the electrons

So we sum the electron energies and look for a narrow
peak at the Q-value of the decay
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Ov3p Decay Rate and <mg>

B 2({m >2 Assumes LNV mechanism is light MajoranamW"
Tos| =G M| 2!
2] = Hov[Pov| | neutrino exchange and SM interactions
10°E
10°E

m2
Vi
V‘l.'
32—— I -y
solar~5x10-5eV?2 2
; dmy
atmospheric
1 ~3x1073eV? .
atmospheric
— my L ~3x103eV?
— 2 solar~5x10-3eV?2 2
— oy = e —— 3
| 0 0
10-1 ] IIIIIII| I| ] IIIIIII| ] L1 1 1111

3 Aug 2017 D.C. Radford




Ov3p Decay Rate and <mgg>

’ Assumes LNV mechanism is light Majorana |
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Ov3p Decay Rate and <mg>

« Covering the inverted hierarchy region (<mpg> ~ 15 meV) requires
sensitivity to half-lives of ~ 1028 years.

« Corresponds to < one decay per year for a tonne of material
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Sensitivity for Inverted Hierarchy

To probe entire region of inverted mass hierarchy requires

« About 10 tonne-years of exposure
« Background rates of ~ 0.1 c/tly
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Sensitivity Requirements ?,,,

« Ten tonne-years of exposure
— Source as detector

— |sotopic enrichment
« Background rates of ~ 0.1 c/t/y in the Ovf33 peak region (!)
— Best possible energy resolution

— Only ultra-clean materials

— Active shielding

One way to think of this:

Build seven GammaSpheres out of enriched "°Ge

Use only ultra-clean materials for cryostats, readout, cables, ...
Bury in a shield 2 km underground

Run for 10 years

Look for a peak with <10 counts at 2039 keV
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Sensitivity for Inverted Hierarchy

An illustration of how hard this really is...
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It’s all about the Backgrounds

Muon induced
» Muon creates high and low energy
H neutrons in the rock
» Neutron excites lead, copper
n * Neutron is thermalized and captured

Qo MeV y

/Cosmogentic activation Alphas h
« High energy neutrons and « From radon daughters
muons break up copper, lead, (>5 MeV)
etc. and make radioactive -_— — , . Lose energy in
isotopes (e.g. Ge-68, Co-60) detector surface )
» They decay and produce

betas and gammas in the ROI
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Muon induced

« Underground lab
H * Muon veto

* Neutron shield

/ Natural radioactivity

» High radiopurity

» Cleanliness
Shielding

Cosmogentic activation

* Minimize above-ground time

» Copper electro-forming
underground

* Analysis cuts

\

Alphas
«  Work in glovebox
* Cleanliness
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Candidate Isotopes for OvBp Searches

Eleven candidate isotopes:

48Ca, 76Ge, 82Se, %Z7r, 100Mo, 110Pd. 116Cd, 124Sn, 130Te,
136X e, and 1°°Nd

2v[3B decay half-lives (~ 10" — 10?7 years) have been
measured for all but 1"9Pd and 1%4Sn

Current best limits on Ov3[3 decay half-lives come from three
isotopes: °Ge, 139Te, 136Xe

All require enrichment except possibly 13°Te (34%)



Detection Techniques

7

lonization
Tracking & Cal: HPGe Crystals:
SuperNEMO GERDA
MAJORANA

N

Scintillation
Liquid Scintillators:
KamLAND ZEN
SNO+

Scin. Bolometers
CUPID (LUCIFER
o LUMINEU, .
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Phonons

Bolometers:
CUORE




Scintillation

KamLAND-Zen (36Xe); SNO+ ('30Te)
Doped liquid scintillators (~ 3%)

Scalable
Take advantage of existing detectors

Fiducial cuts to reduce backgrounds

Poorest resolution
(~ 400 keV FWHM) . i
— Background issues ’SV”I“"VO '

— 2vpp

— Unconvincing for discovery
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Time Projection Chambers

Scintillation plus ionization
EXO, nEXO, NEXT ('36Xe)

Multi-site event rejection

Fiducial cuts

Poor resolution (~ 90 keV FWHM)
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Bolometers

CUORE ('3Te)

— Single crystals of "TeO,
— Operated at ~ 10 mK

— NTD thermistor readout

— World’s largest dilution fridge

Very good resolution
(~ 5 keV FWHM)

No rejection of surface-a backgrounds
Cryogenic operation

* R&D to develop scintillating bolometers
for alpha rejection (CUPID, LUCIFER etc.)
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lonization

GERDA and Majorana ("°Ge)
P-type Point Contact HPGe detectors
87% enriched "°Ge

Operated at ~ 80K
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Best energy resolution (< 3 keV FWHM)
Multi-site background rejection

GERDA (Germany/Italy) operates
detectors in LAr as an active shield

MAJORANA (US) uses vacuum
cryostats made from ultra-pure Cu,
electroformed underground
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Advantages of °Ge

’6Ge offers a number of important advantages over other
candidate isotopes

 Intrinsic high-purity Ge diodes
« Excellent energy resolution; 0.14% at 2.039 MeV
« Powerful background rejection
- Pulse shape discrimination
« Well-understood technologies
- Commercial Ge diodes
- Large Ge arrays (GRETINA, Gammasphere)
- Point contact detectors
* Ge as both source and detector
« Demonstrated ability to enrich from natural 7.8% to 87%



The MAJORANA DEMONSTRATOR (MJD) %

Primary goal is to show that we can reach the ultra-low
backgrounds required to justify a tonne-scale °Ge experiment

Project construction completed and all KPPs met in Sept 2016
Search for low-energy dark matter (light WIMPs, axions, ...)

Funded by U.S. DOE Office of Nuclear Physics and
National Science Foundation

30 kg ®"Ge + 10 kg "2Ge detectors, in two cryostats
’6Ge enriched from 7.8% to 87%

Ultrapure materials; copper that has been
electroformed and machined underground

Passive and active shields
At the 4850-foot level of SURF, Lead, SD
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Modules

Two cryostats
— Each with seven strings of detectors
— Inside a layered shield
— Under 4850 feet of rock o

LN dewar ; 2

Pressure monitor & relief

Condenser

Cold plate Thermosyphon

Ballast tank
Vacuum vessel
A@A / =
_ i Vacuum
Detector strings system
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Shield

Radon Veto Poly
Enclosure Panels
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Ultra-Pure Copper

« Slow electroforming in ~ 12 large baths to produce ultra-pure copper

» Electroforming and machining both done underground to avoid
cosmogenic activation (~ atoms / kg / day)

3 Aug 2017 D.C. Radford 28



MJD Status

Construction completed last year
« Total of 29.5 kg in 34 enriched detectors
« Produced from 42.5 kg of enriched material (87% "°Ge)

Modules 1 and 2 both running in-shield

Some remaining detector issues
* 9/34 enriched and 6/24 natural detectors currently unbiased
* Mostly due to signal or HV connections, or blown FETs
« One due to high leakage, two due to readout noise issues

All CD-4 requirements met as of Sept 31, so now in operations
phase

 Now in “blind mode™ data acquisition

Calibrations for ~ 1 hour per week, remainder is background data
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Enriched detectors in Modules 1 & 2 , before and after PSD cuts
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Final Spectrum

— Above ~300 keV the spectrum is dominated by
2v[3p.
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Low-Energy Performance - Cosmogenics 3

“»

« Controlled surface exposure of enriched material

« Significant reduction of cosmogenics in the low-energy region
— Background is even lower in DS1; ~ 0.01 cts/(kg keV d)

 Tritium dominates in natural detectors below 20 keV
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Low-Energy physics:

Pseudoscalar dark
matter

Vector dark matter
14.4-keV solar axion

e- - 3v decay

Pauli Exclusion Principle



The Next Step A

RECOMMENDATION I

The excess of matter over antimatter in the universe is one of the
most compelling mysteries in all of science. The observation of

z-;g neutrinoless double beta decay in nuclei would immediately

The
 LONG RANGE PLAN
for NUCLEAR SCIENCE

5€§ @@;

2015

demonstrate that neutrinos are their own antiparticles and would have
profound implications for our understanding of the matter-antimatter
mystery.

We recommend the timely development and deployment of a
U.S.-led ton-scale neutrinoless double beta decay experiment.

A ton-scale instrument designed to search for this as-yet unseen
nuclear decay will provide the most powerful test of the patrticle-
antiparticle nature of neutrinos ever performed. With recent
experimental breakthroughs pioneered by U.S. physicists and the
availability of deep underground laboratories, we are poised to make
a major discovery.

This recommendation flows out of the targeted investments of the
third bullet in Recommendation I. It must be part of a broader program
that includes U.S. participation in complementary experimental efforts
leveraging international investments together with enhanced
theoretical efforts to enable full realization of this opportunity.



MAJORANA and GERDA

MAJORANA
“Traditional” configuration

Vacuum cryostats in a
passive graded shield
with ultraclean materials

GERDA

Direct immersion
in active LAr shield
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LEGEND 2
Large Enriched Germanium Experiment for Neutrinoless gp Decay

Together, MAJORANA and GERDA have the
« Best energy resolution and
« Lowest backgrounds of any Ovf33 experiment

We have joined together to form a new international collaboration to
pursue a next-generation experiment.

Mission: “The collaboration aims to develop a phased, Ge-76 based double-beta
decay experimental program with discovery potential at a half-life significantly

longer than 10?7 years, using existing resources as appropriate to expedite physics
results.”

« Select best technologies, based on what has been learned from GERDA and

the MAJORANA DEMONSTRATOR, as well as contributions from other groups and
experiments.



LEGEND

Large Enriched Germanium Experiment for Neutrinoless gp Decay

First phase: LEGEND-200

« Up to 200 kg

Modification of existing
GERDA infrastructure at LNGS

Add larger point-contact
detectors

BG goal: 0.6 ¢ /(FWMH t y)
Start by 2021

Radius (mm)

Z (mm)



LEGEND

Large Enriched Germanium Experiment for Neutrinoless B Decay

Subsequent stages: LEGEND-1000

« Staged 1000 kg

Baseline design:

* 4 -5 payloads in LAr cryostat in
separate volumes

« Each payload 200 - 250 kg, ~100
detectors.

* Depleted LAr in inner volumes

Timeline connected to U.S. DOE
down-select process

BG goal: 0.1 ¢ /(FWHM t y)
Location TBD

Required depth under investigation
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Discovery Probability

Discovery probability of next-generation neutrinoless double-beta decay experiments
Matteo Agostini, Giovanni Benato, and Jason Detwiler arXiv:1705.02996v1
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Inverted-coaxial PPC detectors Q

[ e

MJD detector design is limited to ~ 1.0 kg by depletion issues

New design: Inverted-Coaxial Point Contact

Invented at ORNL, commercialized by Canberra as SAGe Well Detector
Potential for much larger masses, in excess of 3 kg

Same low capacitance, so very
good low-E resolution, low
thresholds

Same excellent PSA performance

Being investigated at ORNL with
LDRD funding

Simulations are very promising

Radius (mm)
: - N W
o o o o

-
o

-20

Prototypes on order from ORTEC
and PHDs 30
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Larger Mass Design

 PHDs are now growing pure crystals with huge diameters
« Could we make a detector with 4.5 kg mass?
« Would be by far the largest single-crystal Ge detector ever made!
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Calculated field; 17 cm diameter, 4 cm thick

17.5 cm crystal, 6.8 kg
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Summary 3

« Majorana neutrinos would give us deep insights into the New Standard
Model and the matter-antimatter asymmetry of the universe.

« 0OvBP experiments are the only feasible way to probe this aspect of the
neutrino. Definitive tests of inverted-hierarchy Majorana neutrinos are
within reach.

« The ultimate goal of the MAJORANA collaboration is to field a tonne-scale
6Ge Ov[B decay search.

— The DEMONSTRATOR aims to show that we can reach the ultra-low
backgrounds required; both MJD and GERDA results are very encouraging

— MJ and GERDA have formed LEGEND, a new international collaboration to
field a next generation experiment

— Aim for sensitivity and discovery levels at T,, ~ 10?8 years

— Top priority for new activity in 2015 NSAC Long Range Plan

— Down-select expected in 2-3 years

— Construction of a first-stage 200kg experiment could begin as early as 2020
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