

Neutrino Interaction Cross Sections

Sam Zeller LANL INSS

July 8, 2009

- for the most part, in the context of ν oscillation experiments
- which neutrino interaction cross sections do we need to know and how well do we know them (both theoretically & experimentally)?

Goals of This Talk

- describe the important physical processes necessary to understand v interactions across a broad energy range
 - we will survey σ_v 's from MeV to TeV
- give a sense of how well we know the v interaction cross sections at each of these energies
- highlight ways in which these cross sections have importance to recent and future v experiments

Starting Point

 imagine you're building a v experiment to measure v oscillations or look for some other exciting v physics ...

supernova, galactic, extra-galactic

Number of v Events

• neutrino interaction cross section plays a critical role in determining number of ν interactions expect to collect

v cross section
$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2}$$

tiny (~10⁻³⁸ cm²) $\sigma_v^{\text{tot}} \sim E_v$

Number of v Events

• neutrino interaction cross section plays a critical role in determining number of ν interactions expect to collect

v cross section

tiny (~10⁻³⁸ cm²)
$$\sigma_{v}^{\text{tot}} \sim E_{v}$$
 go to higher energies

Number of v Events

• neutrino interaction cross section plays a critical role in determining number of ν interactions expect to collect

Measuring σ_{v}

• BTW, if you turn this around, can readily see how you would measure σ_v from observed event yield in detector:

$$\sigma_{v}(E) \sim \frac{N_{v}(E)}{\Phi_{v}(E)_{x} \text{ target}}$$

- absolute σ_{ν} is a delicate measurement as it implies precise knowledge of normalization of incoming ν flux
- this is usually the dominant uncertainty in σ_v measurements

final

Importance of σ_{v}

- v interaction cross section important for telling you:
 - (1) how many v events you should expect
 - (2) also, **what** you should observe in your detector state (can't observe v's directly, only detect products of their interactions)

will depend on:

- type of ν interaction (NC or CC)
- v target (nucleus, nucleon, electron)
- ν energy (MeV, GeV, or TeV)

next in this talk

Two Types of Interactions

Charged Current (CC)

- neutrino in
- charged lepton out

$$\begin{array}{ccc}
\nu_{e} \rightarrow e^{-} & \overline{\nu_{e}} \rightarrow e^{+} \\
\nu_{\mu} \rightarrow \mu^{-} & \overline{\nu_{\mu}} \rightarrow \mu^{+} \\
\nu_{\tau} \rightarrow \tau^{-} & \overline{\nu_{\tau}} \rightarrow \tau^{+}
\end{array}$$

this is how we detected neutrinos in the first place

- flavor of outgoing lepton "tags" flavor of incoming neutrino
- charge of outgoing lepton determines whether v or anti-v

Neutral Current (NC)

- neutrino in
- neutrino out

1st observed in 1972

$$\nu_{\mu} \ e^- \rightarrow \nu_{\mu} \ e^-$$

 ideally one would like to have a relatively simple, universal recipe valid for all energies & v targets; but this does not exist

• target description is different depending on the ν energy

v-nucleon

elastic scattering

(nucleon form factors)

v-quark

inelastic scattering

(parton density functions)

resonances

(another type of inelastic interaction)

• target description is different depending on the ν energy

```
v-nucleon

elastic scattering

(nucleon form factors)

v-quark

inelastic scattering

(parton density functions)
```

there is no clear cut division & both types of reactions can occur in the middle region

• also, treatment of **nuclear effects** is energy dependent ...

```
shell model, impulse quark parton approximation model (Fermi Gas, spectral functions, etc.)
```


Structure of Rest of Talk

- (1) **low energy** (≤ 100 MeV)
- (2) intermediate energy(~ 1 GeV)
- (3) high energy (100's GeV)
- (4) ultra high energy (> 1 TeV)

- which ν process dominates?
- how well is σ_v known? (has it been measured experimentally?)
- why is it important to neutrino experiments?

Neutrino Cross Sections

• this will be our template

Neutrino Cross Sections

- quasi-elastic scattering
 ν_μ n → μ p
- single π production $\nu_{\mu} N \rightarrow \mu N' \pi$
- deep inelastic scattering (DIS) $\nu_{\mu} N \rightarrow \mu X$

we'll talk about each of these in the region in which they are relevant

10N EN

Low Energy

zoom in on left hand side
 E_v ≤ 100 MeV

• where σ is rising rapidly

dominated by QE

 solar, reactor, and supernova v's are all in this energy range


```
solar, reactor (< 10 MeV) ← → (off the plot) supernova (≤ 50 MeV) ← →
```


simple 2-body interaction

elastic (nucleon stays Intact)

in CC case, called "quasi-elastic" ... target changes but does not break up

simple 2-body interaction

elastic (nucleon stays Intact)

- appealing signal channel for v oscillation exps because:
 - charged lepton tags flavor of ν ($\mu \Rightarrow \nu_{\mu}$, $e \Rightarrow \nu_{e}$)
 - can reconstruct E, from outgoing lepton kinematics
 - straightforward to calculate (especially if v scattering off free nucleons)

let's talk about simplest case where scattering off free nucleon ...

10M ENO

At Low Energy

simple 2-body interaction

no free neutrons

(but can scatter off neutrons bound in nuclei ... we'll talk about this later)

10N EN)

At Low Energy

simple 2-body interaction

called "inverse beta decay"

remember this is historically the 1^{st} reaction we observed with v's

it is still important today!

10W ENOV

At Low Energy

simple 2-body interaction

• reaction of choice for detection of reactor & SN v's

10W END

At Low Energy

simple 2-body interaction

• reaction of choice for detection of reactor & SN v's

- dominant σ at these energies
- low threshold ~ $(m_n-m_p)+m_e=1.8 \text{ MeV}$
- e⁺ energy strongly correlated with $\overline{\nu}_{e}$ energy (E_v ~ T_e + 1.8 MeV)
- materials rich in free protons are cheap (water, hydrocarbon)
 so can build large detectors; plus in scintillator can tag neutron
- $-\sigma$ can be accurately calculated (1st estimates done in 1934)

• today, general formula for QE scattering on free nucleons that is routinely used: C.H. Llewellyn Smith, Phys. Rep. **3C**, 261 (1972)

you should recognize some familiar quantities

Fermi constant

 $G_F = 1.16639 \times 10^{-11} \text{ MeV}^{-2}$ (responsible for small σ)

Cabibbo angle

 $\cos\theta_{\rm c} \sim 0.97$

• today, general formula for QE scattering on free nucleons that is routinely used: C.H. Llewellyn Smith, Phys. Rep. **3C**, 261 (1972)

$$L^{\mu\nu} = \frac{1}{2\varepsilon_i \varepsilon} \text{Tr} \left[\gamma \cdot k \ \gamma^{\mu} \ (1 \mp \gamma^5) \ \gamma \cdot k_i \ \gamma^{\nu} \right]$$

easy to calculate, well-known

• today, general formula for QE scattering on free nucleons that is routinely used: C.H. Llewellyn Smith, Phys. Rep. **3C**, 261 (1972)

$$\mathrm{d}\sigma = \frac{G_{\mathsf{F}}^2 \cos^2\vartheta_{\mathrm{c}}}{2} \; 2\pi \; L^{\mu\nu} \; W_{\mu\nu} \; \frac{\mathrm{d}^3k}{(2\pi)^3}$$
 hadronic tensor

form factors
contains all of
the information
on the target

$$W^{\mu
u}(\omega,q) = \int_{\mathrm{f}} \langle \Psi_{\mathrm{f}} | J^{\mu}(q) | \Psi_{0} \rangle$$
 $imes \langle \Psi_{0} | J^{
u\dagger}(q) | \Psi_{\mathrm{f}} \rangle \delta \langle E_{0} + \omega - E_{\mathrm{f}} \rangle$
 $j^{\mu} = \left[F_{1}^{\mathrm{V}}(Q^{2}) \gamma^{\mu} + i \frac{\kappa}{2M} F_{2}^{\mathrm{V}}(Q^{2}) \sigma^{\mu\nu} q_{\nu} - \left(\mathsf{F}_{\mathsf{A}}(Q^{2}) \gamma^{\mu} \gamma^{5} + \left(F_{\mathrm{P}}(Q^{2}) \gamma^{\mu} \gamma^{5} \right) \tau^{\pm} \right) \right]$

• form factors are functions of Q²/M² (M~1 GeV), so can safely neglect this variation at low energy (E_v ≤ 10 MeV)

10N EN

Inverse Beta Decay

• at low energy, form factors are constant & σ reduces to:

$$\sigma \left(\overline{\nu_e} p \rightarrow e^+ n\right) = \underline{G_F^2 E_{\nu}^2 \cos^2 \theta_c} \left(F_V^2 + 3F_A^2\right)$$

$$(F_A \sim 1.267, F_V \sim 1.0)$$

- parameters well constrained by neutron lifetime
- radiative & final state corrs further modify this (are small, calculable, follow from EM, QM)
- σ can be accurately computed uncertainty <0.5% at low E (uncertainty increases at higher energies)

564, 42 (2003)

10N EN

Inverse Beta Decay

 \bullet at low energy, form factors are constant & σ reduces to:

$$\sigma\left(\overline{\nu_{e}} p \to e^{+} n\right) = \underline{G_{F}^{2} E_{\nu}^{2}} \cos^{2}\theta_{c} \left(F_{V}^{2} + 3F_{A}^{2}\right)$$

 $(F_A \sim 1.2/7, F_V \sim 1.0)$

 parameters well constrained by neutro

• radiative & final further (are small, calculate)

σ_ν uncertainty for IBD signal channel for KAMLAND ~0.2%

₄ies)

• σ can be accurate uncertainty <0.5% at low (uncertainty increases at higher e

Strumia, Vissani, PLB **564**, 42

(2003)

10M FUEN

Has This Been Measured?

σ_{IBD} has been checked in reactor experiments
 (a short distance from the reactor where possible oscillation effects are negligible)

$$\overline{\nu_e} p \rightarrow e^+ n$$

measurements at few-% level, consistent with prediction

	Goesgen	Krasnoyarsk	Bugey
	PRD 34 , 2621 (1986)	JETP Lett 54 , 2225 (1991)	PLB 338 , 383 (1994)
σ _{exp}	3.0%	2.8%	1.4%

• theory is ahead here, σ_v measurements limited by how well know reactor neutrino flux

10W END

Low Energy σ_{v}

- neutrinos scatter off more than free protons (IBD)
- for ex., what if you want to detect SN ν 's in Super-K (H₂O)?

K. Zuber, Neutrino Physics, IOP, 2004

$v+e^- \rightarrow v+e^-$ Scattering

- process in which we 1st discovered NC's!
- purely-leptonic process, so σ calculation is very straightforward (no form factors!)

$$\sigma \sim s = (E_{CM})^2 = 2m_{target}E_{v}$$

4 orders of magnitude less likely than scattering off nucleons at 1 GeV!

$v+e^- \rightarrow v+e^-$ Scattering

appealing to use for SN and solar ν detection because
 it is directional! (e-emitted at a very small angle wrt incoming ν direction)

$$E_e \, \theta_e^2 < 2 \, m_e$$
 can derive from simple E, mom conservation

 recoiling e⁻ preserves knowledge of incident ν direction (compared to e⁺ from IBD which is essentially isotropic for low E_ν)

$v+e^- \rightarrow v+e^-$ Scattering

appealing to use for SN and solar ν detection because
 it is directional! (e-emitted at a very small angle wrt incoming ν direction)

$$E_e \, \theta_e^2 < 2 \, m_e$$
 can derive from simple E, mom conservation

- recoiling e⁻ preserves knowledge of incident v direction (compared to e⁺ from IBD which is essentially isotropic for low E_v)
- Kamiokande was the 1st to point back to the sun also Super-K, SNO, Borexino
- tend not to use for reactor exps
 (v̄e e⁻ → v̄e e⁻)
 single e⁻ difficult to distinguish from background caused by radioactivity

Fukuda *et al.*, PRL **81**, 1158 (1998)

10W EN)

Low Energy σ_{v}

let's go back to our example ...

K. Zuber, Neutrino Physics, IOP, 2004

10M FUEN

Nuclear Targets

 nature of observables depends on the nuclear physics of the specific nucleus (add'l ejected nucleons or nuclear de-excitation γ's)

 $\frac{v_e}{v_e} \stackrel{d \to e^- pp}{d \to e^+ nn} \stackrel{\text{deuteron breakup}}{\stackrel{\text{in heavy water (SNO)}}{\stackrel{\text{loo}}{=}} \frac{v_e}{v_e} \stackrel{\text{loo}}{\to} e^{-16}F \stackrel{\text{interactions with}}{\stackrel{\text{loo}}{=}} \frac{v_e}{v_e} \stackrel{\text{loo}}{\to} e^{-16}N \stackrel{\text{loo}}{\to} e^{-12}N \stackrel{\text{interactions with}}{\stackrel{\text{loo}}{=}} \frac{v_e}{v_e} \stackrel{\text{loo}}{\to} e^{-12}N \stackrel{\text{interactions with}}{\stackrel{\text{loo}}{=}} \frac{v_e}{v_e} \stackrel{\text{loo}}{\to} e^{-12}N \stackrel{\text{interactions with}}{\stackrel{\text{loo}}{=}} \frac{v_e}{v_e} \stackrel{\text{loo}}{\to} e^{-12}N \stackrel{\text{interactions with}}{\stackrel{\text{loo}}{\to}} \frac{v_e}{v_e} \stackrel{\text{loo}}{\to} e^{-12}N \stackrel{\text{loo}$

10M FUEN

Nuclear Targets

 nature of observables depends on the nuclear physics of the specific nucleus (add'l ejected nucleons or nuclear de-excitation γ's)

• $\nu_e^{37} \text{Cl} \rightarrow e^{-37} \text{Ar was 1}^{\text{st}}$ reaction used to detect solar ν (Ray Davis)

10W END

Nuclear Targets

 nature of observables depends on the nuclear physics of the specific nucleus (add'l ejected nucleons or nuclear de-excitation γ's)

examples of NC interactions $\begin{array}{c} v d \rightarrow v \text{ pn} \\ \hline v d \rightarrow \overline{v} \text{ pn} \\ \hline v^{16}O \rightarrow v^{16}O^* \\ \hline v^{12}C \rightarrow v^{12}C^* \\ \end{array}$ cascade of 5-10 MeV excitation γ 's

• let's start with simplest nucleus, deuteron (deuterium nucleus=1n+1p)

10W END

Deuteron

- even though σ 's are more than order of magnitude smaller than IBD reaction on protons, important because both CC & NC
 - v-d interactions used by SNO, $\overline{v_e}$ -d by Bugey

$$\begin{array}{c} \text{CC} & \begin{cases} v_e \ d \rightarrow e^- \ pp & \text{(threshold} \sim m_p + m_e - m_n + E_B = 1.4 \ \text{MeV}) \\ \hline v_e \ d \rightarrow e^+ \ nn & \text{(threshold} \sim m_n + m_e - m_p + E_B = 4.0 \ \text{MeV}) \end{cases}$$

$$\begin{array}{c} \text{NC} & \begin{cases} v \ d \rightarrow v \ pn \\ \hline v \ d \rightarrow \overline{v} \ pn \end{cases} & \text{(threshold} \sim E_B = 2.2 \ \text{MeV}) \end{cases}$$

10W EN

Deuteron

- even though σ 's are more than order of magnitude smaller than IBD reaction on protons, important because both CC & NC
 - ν -d interactions used by SNO, $\overline{\nu_e}$ -d by Bugey

$$\begin{array}{c} \text{CC} & \left\{ \begin{array}{c} \nu_e \ d \rightarrow e^- \ pp \\ \hline \nu_e \ d \rightarrow e^+ \ nn \end{array} \right. \end{array}$$

sensitive to v oscillations

$$\frac{NC}{(flavor blind)} \begin{cases}
 v d \rightarrow v pn \\
 \hline{v} d \rightarrow \overline{v} pn
\end{cases}$$

measures total flux of active ν 's independent of oscillations

• number of groups have very carefully computed these σ 's

10N FUEN

Deuteron

- at low E's, know a lot because deuteron is so weakly bound (almost free neutron & proton, so almost same as IBD)
 - nucleon is almost free
 - deuteron is stable
 - know neutron lifetime
 - constraints from γ+d
- σ rather well determined, theoretical uncertainty is ~1% at lowest E's (sufficient to interpret SNO results)
- more uncertain at higher energies (≤ 10% at 100 MeV)

Nakamura et al., PRC **63**, 034617 (2001)

10N FUNDAMEN)

Deuteron

• only one experimental measurement of CC ν_{e} d cross section

Willis et al., Phys. Rev. Lett. 44, 522 (1980), LAMPF stopped π^+ beam

$$\sigma(v_e d \rightarrow e^- pp) = (0.52 \pm 0.18) \times 10^{-40} cm^2$$

35% measurement

• several reactor measurements of CC, NC \overline{v}_e d cross sections

Savannah River [1]	$\sigma^{ncd} = 3.8 \pm 0.9$	$\sigma^{ncd}_{ m exp}/\sigma^{ncd}_{theor} = 0.8 \pm 0.2$
$\sigma [10^{-45} cm^2/v_e]$	$\sigma^{ccd} = 1.5 \pm 0.4$	$\sigma^{ccd}_{ m exp}/\sigma^{ccd}_{theor} = 0.7 \pm 0.2$
(1979)	$\sigma_{\mathrm{exp}}^{ccd}/\sigma_{\mathrm{exp}}^{ncd} = 0.40 \pm 0.14$	$\sigma_{thoer}^{ccd}/\sigma_{theor}^{ncd}=0.353$
Krasnoyarsk [2]	$\sigma^{ncd} = 3.0 \pm 1.0$	$\sigma_{\mathrm{exp}}^{ncd}/\sigma_{theor}^{ncd} = 0.95 \pm 0.33$
$\sigma [10^{-44} cm^2/fis.^{235} U]$	$\sigma^{ccd} = 1.1 \pm 0.2$	$\sigma^{ccd}_{ m exp}/\sigma^{ccd}_{theor} = 0.98 \pm 0.18$
(1990)	$\sigma^{ccd}_{ m exp}/\sigma^{ncd}_{ m exp} = 0.37 \pm 0.14$	$\sigma_{thoer}^{ccd}/\sigma_{theor}^{ncd} = 0.353$
Rovno [3]	$\sigma^{ncd} = 2.71 \pm 0.46 \pm 0.11$	$\sigma_{ m exp}^{ncd}/\sigma_{theor}^{ncd} = 0.92 \pm 0.18$
$\sigma[10^{-44}cm^2/PWR-440]$	$\sigma^{ccd} = 1.17 \pm 0.14 \pm 0.07$	$\sigma^{ccd}_{\rm exp}/\sigma^{ccd}_{theor} = 1.08 \pm 0.19$
(1991)	$\sigma_{\mathrm{exp}}^{ccd}/\sigma_{\mathrm{exp}}^{ncd} = 0.43 \pm 0.10$	$\sigma_{thoer}^{ccd}/\sigma_{theor}^{ncd} = 0.37 \pm 0.08$
Bugey [4]	$\sigma^{ncd} = 3.29 \pm 0.42$	$\sigma_{ m exp}^{ncd}/\sigma_{theor}^{ncd} = 1.01 \pm 0.13$
$\sigma [10^{-44} cm^2/fis.]$	$\sigma^{ccd} = 1.10 \pm 0.23$	$\sigma^{ccd}_{\rm exp}/\sigma^{ccd}_{theor} = 0.97 \pm 0.20$
(1999)	$\sigma^{ccd}_{ m exp}/\sigma^{ncd}_{ m exp} = 0.33 \pm 0.08$	$\sigma_{thoer}^{ccd}/\sigma_{theor}^{ncd} = 0.348 \pm 004$

Kozlov et al., Phys. Atom. Nucl. 63, 1016 (2000)

20-30% measurements

not at all competitive with theory

10W EN)

120

 one nucleus that has been closely studied is ¹²C (abundantly contained in ordinary liquid scintillators)

K. Zuber, v Physics, IOP, 2004

CC interactions

$$\nu_{\mu}$$
 ¹²C $\rightarrow \mu^{-}$ ¹²N_{gs} ν_{e} ¹²C $\rightarrow e^{-}$ ¹²N_{gs}

$$v_e^{-12}C \rightarrow e^{-12}N_{gs}$$

(note: also written as $^{12}\text{C}(\nu_{\text{u}},\mu^-)^{12}\text{N}_{\text{qs}}$ and $^{12}\text{C}(\nu_{\text{e}},\text{e}^-)^{12}\text{N}_{\text{qs}})$

10N EN

12**C**

 one nucleus that has been closely studied is ¹²C (abundantly contained in ordinary liquid scintillators)

K. Zuber, v Physics, IOP, 2004

NC interactions

$$v^{12}C \rightarrow v^{12}C^*(15.11 \text{ MeV})$$

(note: also written as ${}^{12}C(v,v){}^{12}C^*$)

10N MeV

12**C**

one nucleus that has been closely studied is ¹²C

 (abundantly contained in ordinary liquid scintillators)

ex. muon capture

& can also relate to measured lifetimes of these isotopes

• σ 's constrained by the obvious requirement that the same method and parameters must describe related processes

10N ENONEV

12**C**

• intensive program of beam dump v experiments at Los Alamos & Rutherford lab (10-20% measurements)

flux-averaged σ in units of cm ²	$^{12}\mathrm{C}(u_e,e^-)^{12}\mathrm{N}_{gs}$ decay at rest	$^{12}\mathrm{C}(u_{\mu},\mu^{-})^{12}\mathrm{N}_{gs}$ decay in flight	$^{12}{\rm C}(\nu, \nu')^{12}{\rm C}(15.11)$ decay at rest
KARMEN	$9.1 \pm 0.5 \pm 0.8$	-	10.4 ± 1.0 ± 0.9
LSND	$8.9 \pm 0.3 \pm 0.9$	$66\pm10\pm10$	-
E225	$10.5 \pm 1.0 \pm 1.0$	-	-
Shell model ¹⁰	9.1	63.5	9.8
$\mathrm{CRPA}^{4,5}$	8.9	63.0	10.5
EPT 11	9.2	59	9.9

- predictions agree with experimental measurements
- σ for ¹²N_{g.s.} can be predicted with accuracy of ~5% (have to rely on nuclear theory but can take advantage of a # of constraints from related processes like β decay transitions of various isotopes, μ⁻ capture, etc.)

10M EN

12**C**

also measured energy dependence of the cross sections

$$\nu_e$$
 $^{12}C \rightarrow e^{-}$ $^{12}N_{g.s.}$

Auerbach *et al.*, PRC **64**, 065001 (2001) LSND, DAR of stopped π^+ and μ^+

$$\nu_{\mu}^{-12}C \rightarrow \mu^{-12}N_{q.s.}$$

Auerbach *et al.*, PRC **66**, 015501 (2002) LSND, π^+ DIF

10M FUEN

12**C**

 \bullet for higher energy ν 's, populate not only g.s. but also

continuum states ...

- calculation of σ to excited states is a less certain procedure (need to model more complex nuclear dynamics)
- there are model-dependent uncertainties not present in \$^{12}N_{g.s.}\$

10W EN)

Low Energy Scorecard

process	σ uncertainty	exp'l meas	importance
$\frac{IBD}{v_e}p\toe^+n$	<0.5%	1.4-3%_ reactor v_e	main reaction channel for detecting reactor , SN v 's
v-deuteron	~1% (<10 MeV) less certain higher E	25-30% one $\nu_{\rm e}$, several $\overline{\nu_{\rm e}}$	solar v's (SNO) reactor v's (Bugey)
ν- ¹² C	~5% (¹² N _{gs}) less certain ¹² N*	10-20% KARMEN, LSND	SN + atmospheric ν's (threshold too high for solar or reactor, unless pick diff nucleus)

- theory is in better shape than exp'l measurements
- σ 's are well known because can tie them to other processes

10W KeV)

What I Didn't Talk About

solar v's ICARUS (Homestake, GALLEX, SAGE)

- radio-chemical transitions (³⁷Cl ,⁷¹Ga,⁴⁰Ar)
 - complicated nuclear physics (need to now nuclear matrix elements)
 - showed you one of simplest cases with $^{12}\text{C} \rightarrow ^{12}\text{N}_{\text{g.s.}}$
 - ground state transitions generally well known because can be tied to other processes, but larger uncertainties for excited states
- coherent elastic $vA \rightarrow vA$ scattering (J. Wilkerson's talk)
 - larger σ than IBD at low energy, but difficult to observe
 - very small nuclear recoil (keV)

Intermediate Energies

- important for studies of atmospheric v's
- future accelerator-based
 v experiments will all be
 operating in this E range
- things get more complicated (multiple processes contribute!)
- need to describe each of these processes individually (each has their own σ model)

Intermediate Energies

QE scattering

at higher energies
E_v ~ 1 GeV

$$\left(\begin{array}{c}
\nu_{\mu} & n \to \mu^{-} p \\
\nu_{e} & n \to e^{-} p
\end{array}\right)$$

 important because it is the dominant signal channel in atmospheric & accel-based v oscillation experiments

QE Scattering at 1 GeV

day, general formula for QE scattering on free nucleons that is routinely used: C.H. Llewellyn Smith, Phys. Rep. **3C**, 261 (1972)

$$\mathrm{d}\sigma = \frac{G_{\mathrm{F}}^2 \cos^2\vartheta_{\mathrm{c}}}{2} \ 2\pi \ L^{\mu\nu} \ W_{\mu\nu} \ \frac{\mathrm{d}^3k}{(2\pi)^3}$$
 hadronic tensor

remember:
form factors
encapsulate
info about the
structure of the
object are
scattering from

$$W^{\mu
u}(\omega,q) = \int_{\mathrm{f}} \langle \Psi_{\mathrm{f}} \left(J^{\mu}(q) \mid \Psi_{0} \rangle \right)$$
 $imes \langle \Psi_{0} \mid J^{
u\dagger}(q) \mid \Psi_{\mathrm{f}} \rangle \, \delta(E_{0} + \omega - E_{\mathrm{f}})$
 $j^{\mu} = \left(F_{1}^{\mathrm{V}}(Q^{2}) \gamma^{\mu} + i \frac{\kappa}{2M} F_{2}^{\mathrm{V}}(Q^{2}) \sigma^{\mu\nu} q_{
u} - \left(\mathsf{F}_{\mathsf{A}}(Q^{2}) \gamma^{\mu} \gamma^{5} + F_{\mathsf{P}}(Q^{2}) \gamma^{\mu} \gamma^{5} \right) \tau^{\pm}$

• as move up in E_v, Q² dependence of FFs becomes important

QE Scattering at 1 GeV

FFs are not calculable, need to measure experimentally

$$j^{\mu} = \left[F_1^{\mathrm{V}}(Q^2)\gamma^{\mu} + i\frac{\kappa}{2M}F_2^{\mathrm{V}}(Q^2)\sigma^{\mu\nu}q_{\nu} - F_{\mathrm{A}}(Q^2)\gamma^{\mu}\gamma^5 + F_{\mathrm{P}}(Q^2)q^{\mu}\gamma^5\right]\tau^{\pm}$$

vector form factors

- proton is not point-like but is an extended object with some charge distribution
- vector part can be checked in e⁻ elastic scattering (well known, under control)

J.J. Kelly, Phys. Rev. C70, 068202 (2004)

QE Scattering at 1 GeV

• FFs are not calculable, need to measure experimentally

$$j^{\mu} = \left[F_{1}^{V}(Q^{2})\gamma^{\mu} + i \frac{\kappa}{2M} F_{2}^{V}(Q^{2})\sigma^{\mu\nu}q_{\nu} \right.$$
 $\left. - F_{A}(Q^{2})\gamma^{\mu}\gamma^{5} + F_{P}(Q^{2})q^{\mu}\gamma^{5} \right] \tau^{\pm}$

pseudoscalar form factor

contribution enters as $(m_l/M)^2$ small for v_e , v_u

• since F_P is small and know F_V from e^- scattering, σ is then determined at these energies ... except for F_A ...

QE Scattering at 1 GeV

• FFs are not calculable, need to measure experimentally

$$j^{\mu} = \left[F_{1}^{V}(Q^{2})\gamma^{\mu} + i\frac{\kappa}{2M}F_{2}^{V}(Q^{2})\sigma^{\mu\nu}q_{\nu} - \left(F_{A}(Q^{2})\gamma^{\mu}\gamma^{5} + F_{P}(Q^{2})q^{\mu}\gamma^{5} \right]\tau^{\pm} \right]$$

axial form factor

$$F_A(Q^2) = \frac{1.267}{(1+Q^2/M_A^2)^2}$$

$$F_A(Q^2=0)$$
determined from
 β decay
(same value saw earlier for IBD)

QE Scattering at 1 GeV

• FFs are not calculable, need to measure experimentally

$$j^{\mu} = \left[F_{1}^{V}(Q^{2})\gamma^{\mu} + i\frac{\kappa}{2M}F_{2}^{V}(Q^{2})\sigma^{\mu\nu}q_{\nu} - \left(F_{A}(Q^{2})\gamma^{\mu}\gamma^{5} + F_{P}(Q^{2})q^{\mu}\gamma^{5} \right]\tau^{\pm} \right]$$

axial form factor

$$F_A(Q^2) = \frac{1.267}{(1+Q^2/M_A^2)^2}$$

- Q² dependence can only be measured in v scattering
- not as well measured
- assumed to have dipole form

(function of a single parameter "axial mass" = M_A)

must be measured experimentally!

M_A Measurements

past world average:

$$M_A = 1.03 \pm 0.02 \text{ GeV}$$

- was the focus of many early bubble chamber exps
- mostly QE data on D_2 (1969-1990)

$$\nu_{\mu} n \rightarrow \mu^{-} p$$

 because plays such a crucial role in σ, a lot of interest in this & attempts to re-measure this recently

Modern M_A

past world average:

$$M_A = 1.03 \pm 0.02 \text{ GeV}$$

- K2K SciFi (¹6O, Q²>0.2)
 Phys. Rev. D74, 052002 (2006)
 M_A=1.20 ± 0.12 GeV
- K2K SciBar (12C, Q2>0.2)
 AIP Conf. Proc. 967, 117 (2007)
 M_A=1.14 ± 0.11 GeV
- MiniBooNE (12 C, Q 2 >0) paper in preparation M_A =1.35 ± 0.17 GeV
- MINOS (Fe, Q²>0.3)
 NuInt09, preliminary
 M_A=1.26 ± 0.17 GeV

Modern M_A

past world average:

$$M_A = 1.03 \pm 0.02 \text{ GeV}$$

- K2K SciBar (12C, Q2>0.2)
 AIP Conf. Proc. 967, 117 (2007)
 M_A=1.14 ± 0.11 GeV
- MiniBooNE (12 C, Q 2 >0) paper in preparation M_A =1.35 ± 0.17 GeV
- MINOS (Fe, Q²>0.3)
 NuInt09, preliminary
 M_A=1.26 ± 0.17 GeV
- NOMAD (12 C, Q 2 >0) arXiv:0812.4543 [hep-ex] M_A =1.07 ± 0.07 GeV

QE Cross Section

$$\nu_{\mu} \ \mathsf{n} o \mu^{\mathsf{T}} \ \mathsf{p}$$

- large span at any given E_v
- typically assign
 ~20% σ uncertainty
 at these energies
 (recall: known to <0.5% E_ν<10 MeV)
- most of the data on D₂
- oscillation experiments use heavier targets!

intermedias

Nuclear Effects

• for v scattering off heavier targets (12C, 16O, 56Fe, etc,), need to account for fact that nucleons are in fact part of a nucleus

Nuclear Effects

 in a nucleus, target nucleon has some initial momentum which modifies the observed scattering

Los Alamos

Nuclear Effects

 in a nucleus, target nucleon has some initial momentum which modifies the observed scattering

hadronic tensor now an integral over initial nucleon states

$$W_A^{\mu\nu} = \frac{1}{2} \int d^3p \, dE (\mathbf{p}, E) \frac{1}{4 E_{|\mathbf{p}|} E_{|\mathbf{p}+\mathbf{q}|}} W^{\mu\nu}(\tilde{p}, \tilde{q})$$

 simplest: Fermi Gas model (2 free parameters)

$$p_F$$
=220 MeV/c (12C)
E_B =25 MeV

$$P_{RFGM}(\mathbf{p}, E) = \left(\frac{6\pi^2 A}{p_F^3}\right)\theta(p_F - \mathbf{p})\delta(E_\mathbf{p} - E_B + E)$$

Nuclear Effects

 in a nucleus, target nucleon has some initial momentum which modifies the observed scattering

hadronic tensor now an integral over initial nucleon states

$$W_A^{\mu\nu} = \frac{1}{2} \int d^3p \, dE (\mathbf{p}, E) \frac{1}{4 \, E_{|\mathbf{p}|} \, E_{|\mathbf{p}+\mathbf{q}|}} \, W^{\mu\nu}(\tilde{p}, \tilde{q})$$

 simplest: Fermi Gas model (2 free parameters)

$$p_F = 220 \text{ MeV/c} (^{12}\text{C})$$

 $E_B = 25 \text{ MeV}$

- energy transfer > E_B
- final state: p_p > p_F (Pauli blocking)

Nuclear Effects

 in a nucleus, target nucleon has some initial momentum which modifies the observed scattering

hadronic tensor now an integral over initial nucleon states

$$W_A^{\mu\nu} = \frac{1}{2} \int d^3p \, dE (\mathbf{p}, E) \frac{1}{4 E_{|\mathbf{p}|} E_{|\mathbf{p}+\mathbf{q}|}} W^{\mu\nu}(\tilde{p}, \tilde{q})$$

- simplest: Fermi Gas model
- more realistic: spectral functions superscaling

Nuclear Effects

• this gives a different σ for scattering off nucleons bound in nuclei than for scattering off free nucleons

 significant suppression at low E_ν (and low Q²) if the target is ¹²C, ¹⁶O, etc.

redica)

v_{μ} QE Scattering on ¹²C

• modern measurements of QE σ at these energies

• ~ 30% difference between QE σ measured at low & high E both on 12 C ?!

ν_{μ} QE Scattering on ¹²C

• modern measurements of QE σ at these energies

good news is that will have results soon from NuMI experiments here at Fermilab

 v_{μ} QE Scattering on ¹²C

M_A & nuclear effects
important for accurate
prediction of v QE scattering
at ~1 GeV
(atmospheric, accelerator)

Intermediate Energies

 as v energy increases, other channels open up & QE process becomes less important

single pion production

intermedian

Resonance Production

• if have enough E, can excite the nucleon to a baryonic resonance

$$u N o l N^*$$
 $N^* o \pi N'$

7 possible channels (3 CC, 4 NC):

$$u_{\mu} p o \mu^{-} p \pi^{+}$$
 $u_{\mu} p o \nu_{\mu} n \pi^{+}$
 $u_{\mu} p o \nu_{\mu} n \pi^{+}$
 $u_{\mu} p o \nu_{\mu} n \pi^{0}$
 $u_{\mu} p o \nu_{\mu} p \pi^{0}$
 $u_{\mu} p o \nu_{\mu} p \pi^{0}$
 $u_{\mu} n o \nu_{\mu} n \pi^{0}$
 $u_{\mu} n o \nu_{\mu} n \pi^{0}$
 $u_{\mu} n o \nu_{\mu} n \pi^{0}$

nucleon+ pion(s)final state

- main contribution is from $\Delta(1232) \rightarrow N\pi$
- most widely used model (Rein, Sehgal, Annals Phys 133, 179 (1981))
- experiments typically simulate ~18 different resonances (Δ, N^*) including their single- π & multi- π decay modes, also $\Delta \rightarrow N_{\gamma}!$

Single π Cross Sections

• variety of σ measurements, mostly bubble chamber experiments (1970's-80's), 25-40% level uncertainties

NC π^0 Production

many channels, let's pick one important example ...

$$\nu_{\mu} N \rightarrow \nu_{\mu} N \pi^{0}$$

- important for neutrino oscillation experiments
 - important background for experiments looking for $\nu_{\rm u} \rightarrow \nu_{\rm e,}\,\theta_{\rm 13}$

(final state can mimic a QE $\nu_{\rm e}$ interaction, $\pi^0 \rightarrow \gamma \chi$

Dackground

NC π^0 Production

- historically, only two existing measurements of ν_{μ} NC π^0 production (1978 and 1983)
- together < 500 events

this σ tells you how many π^0 background events should expect to have

v osc exps typically assign 25-40% uncertainties to initial interaction σ

stermedian

Final State Interactions

• nuclear effects further complicate this description (once produce π^0 , has to get out of nucleus, FSI alter π^0 kinematics!)

(T. Leitner, E_v beam ~ 1 GeV)

- example, at E_v =1 GeV
 - ~20% of π^0 get absorbed
 - ~10% charge exchange $(\pi^0 \rightarrow \pi^{+,-})$

• need to predict initial interaction σ and final state effects

Final State Interactions

• nuclear effects further complicate this description (once produce π^0 , has to get out of nucleus, FSI alter π^0 kinematics!)

• need to predict initial interaction σ and fin state effects

NC π⁰ Production in Nuclei

- v experiments are just starting to take a careful look at this
- 21,542 ν_{μ} NC π^0 events measured in MiniBooNE (¹²C) (C. Anderson, NuInt09, May 2009)

(16% measurement)

Intermediate Energy Scorecard

process	σ uncertainty	importance
QE	~20-30% (M _A ? nuclear effects?)	signal channel for atmospheric & accelerator-based v osc exps
π production	~25-40% + FSI uncertainties	background channels for atmos & accelerator-based ν osc exps

- σ's about an order of magnitude less well known than what we saw at low energy ... complex region
- nuclear effects & FFs create added complications & uncertainty

What I Didn't Talk About

- coherent π production $(\nu_{\mu}A \rightarrow \nu_{\mu}A\pi^{0}, \nu_{\mu}A \rightarrow \mu^{-}A\pi^{+})$
 - small fraction of total π production
 - large uncertainties in its contribution at ~ 1 GeV
 - still trying to sort out experimentally
- NC elastic scattering ($vp \rightarrow vp$, $vn \rightarrow vn$)
 - NC analogue of QE scattering
 - follows exact same description as QE (add $\sin^2\theta_w$, Δs)
 - can use to measure M_A , Δs

extrapolation of DIS into intermediate energy region

- feed-down into low energy region
- will talk about DIS next ...

high Eev

v DIS Cross Sections

- let's move up to an energy range where safely in deep inelastic scattering (DIS) regime
- dominant process at these energies

high Eev

v DIS Cross Sections

high GeV

Deep Inelastic Scattering

$$\nu_{\mu} N \rightarrow \mu^{-} X$$

 in the quark parton model, these reactions are described as the scattering of v's from q (and q) constituents in nucleon

$$\begin{split} Q^2 &= 4(E_{\mu} + E_{had}) E_{\mu} sin^2 \frac{\theta_{\mu}}{2} \quad \text{(4-momentum transfer squared)} \\ v &= E_{had} \quad \text{(energy transfer)} \\ y &= E_{had} / E_{\nu} \quad \text{(inelasticity)} \\ x &= \frac{Q^2}{2M\nu} \quad \text{(fraction of the nucleon momentum carried by struck quark, i.e. Bjorken x)} \end{split}$$

high EeV

v DIS Cross Section

written in its simplest form ...

high Lev

v DIS Cross Section

written in its simplest form ...

$$\frac{d^2\sigma^{\nu,\overline{\nu}}}{dx\,dy} = \frac{G_F^2\,y}{16\pi} \frac{1}{(1+Q^2/M_{W,Z}^2)^2} L_{\mu\,\nu} W^{\mu\,\nu}$$
 leptonic tensor
$$L_{\mu\,\nu} = 2\,\mathrm{Tr}[(\rlap/k'+m)\gamma_\mu(1-\gamma_5)\,\rlap/k\,\gamma_\nu]$$

hadronic tensor

W_i called "structure functions" rather than "form factors" (but idea is the same)

$$W^{\mu\nu} = -g^{\mu\nu} W_1(x, Q^2) + \frac{p^{\mu}p^{\nu}}{M^2} W_2(x, Q^2) - i\epsilon^{\mu\nu\lambda\sigma} \frac{p_{\lambda}q_{\sigma}}{2M^2} W_3(x, Q^2) + \frac{q^{\mu}q^{\nu}}{M^2} W_4(x, Q^2) + (p^{\mu}q^{\nu} + p^{\nu}q^{\mu}) W_5(x, Q^2)$$

(contains all of the information about nucleon structure)

high Lev

v DIS Cross Section

 for simplicity, the W_i usually replaced by dimensionless F_i

$$F_1(x, Q^2) = W_1(x, Q^2)$$

$$F_2(x, Q^2) = \frac{\nu}{M} W_2(x, Q^2)$$

$$F_3(x, Q^2) = \frac{\nu}{M} W_3(x, Q^2)$$

$$F_4(x, Q^2) = \frac{\nu}{M} W_4(x, Q^2)$$

$$F_5(x, Q^2) = W_5(x, Q^2)$$

• at LO, neglecting lepton mass terms, the DIS σ reduces to:

$$\frac{d^{2}\sigma^{\nu(\overline{\nu})}}{dxdy} = \frac{G_{F}^{2}ME_{\nu}}{\pi(1 + \frac{Q^{2}}{M_{W}^{2}})^{2}} \left[\left(1 - y - \frac{Mxy}{2E_{\nu}} \right) F_{2}^{\nu(\overline{\nu})} + \frac{y^{2}}{2} \frac{2xF_{1}^{\nu(\overline{\nu})}}{2} \pm y(1 - \frac{y}{2}) xF_{3}^{\nu(\overline{\nu})} \right]$$

 F_1 , F_2 , F_3 contain direct information on nucleon structure; they are functions of x, Q^2

high Eev

v DIS Cross Section

 for simplicity, the W_i usually replaced by dimensionless F_i

$$F_1(x, Q^2) = W_1(x, Q^2)$$

$$F_2(x, Q^2) = \frac{\nu}{M} W_2(x, Q^2)$$

$$F_3(x, Q^2) = \frac{\nu}{M} W_3(x, Q^2)$$

$$F_4(x, Q^2) = \frac{\nu}{M} W_4(x, Q^2)$$

$$F_5(x, Q^2) = W_5(x, Q^2)$$

• at LO, neglecting lepton mass terms, the DIS σ reduces to:

$$\frac{d^2\sigma^{\nu(\overline{\nu})}}{dxdy} = \frac{G_F^2 M E_{\nu}}{\pi (1 + \frac{Q^2}{M_W^2})^2} \left[\left(1 - y - \frac{Mxy}{2E_{\nu}} \right) F_2^{\nu(\overline{\nu})} + \frac{y^2}{2} 2x F_1^{\nu(\overline{\nu})} \pm y (1 - \frac{y}{2}) x F_3^{\nu(\overline{\nu})} \right]$$

- unique to neutrino scattering
- absent for e, μ scattering because it is parity violating
- flips sign in case of $\overline{\nu}$

high Lev

v DIS Cross Section

 for simplicity, the W_i usually replaced by dimensionless F_i

$$F_1(x, Q^2) = W_1(x, Q^2)$$

$$F_2(x, Q^2) = \frac{\nu}{M} W_2(x, Q^2)$$

$$F_3(x, Q^2) = \frac{\nu}{M} W_3(x, Q^2)$$

$$F_4(x, Q^2) = \frac{\nu}{M} W_4(x, Q^2)$$

$$F_5(x, Q^2) = W_5(x, Q^2)$$

• at LO, neglecting lepton mass terms, the DIS σ reduces to:

$$\frac{d^2\sigma^{\nu(\overline{\nu})}}{dxdy} = \frac{G_F^2 M E_{\nu}}{\pi (1 + \frac{Q^2}{M_{W}^2})^2} \left[\left(1 - y - \frac{Mxy}{2E_{\nu}} \right) F_{\mathbf{2}}^{\nu(\overline{\nu})} + \frac{y^2}{2} 2x F_{\mathbf{1}}^{\nu(\overline{\nu})} \pm y (1 - \frac{y}{2}) x F_{\mathbf{3}}^{\nu(\overline{\nu})} \right]$$

SFs
expressed in terms
of quark composition
of the target
(PDFs)

$$F_2^{v,\overline{v}} = 2\sum_i x(Q_i(x) + \overline{Q}_i(x))$$

$$xF_3^{v,\overline{v}} = 2\sum_i x(Q_i(x) - \overline{Q}_i(x))$$
measures density distribution of all quarks & antiquarks in the nucleon distribution

high EeV

Experimental Coverage

structure functions (PDFs)
 have been measured
 across an extremely
 large kinematic range

$$0.1 < Q^2 < 10^4 \text{ GeV}^2$$

 $10^{-6} < x < 1$

 measurements at HERA (H1, ZEUS) have extended reach to low x, high Q²

high Lev

Structure Functions

• example from ν DIS experiments

 quark model and pQCD make definite predictions for v DIS scattering which are beautifully confirmed by experiment

Tzanov et al., PRD 74, 012008 (2006)

high Lev

Nuclear Effects

- in charged lepton scattering, observe that the SFs measured on heavy nuclei differ from those on D
- differences observed over entire x region
- if v scattering on nucleus at these energies, the nucleon structure functions get further modified by nuclear effects
- effects are absorbed into "effective" SFs in nucleus

high EeV

Total vN Cross Section

• if you look in the PDG, you'll see this plot:

PDG, 2009

- the total σ has been measured to 2% level
- is the one place where the neutrino σ is this well measured

high Lev

What I Didn't Talk About

• v_{τ} cross sections

- need to include add'l SFs that we neglected, α (m_i)²
- OPERA ($v_{\mu} \rightarrow v_{\tau}$ in CNGS beam)
- heavy charm production $(v_{\mu} N \rightarrow \mu^{-} c X)$
 - σ is suppressed at low E, ("slow rescaling", $x \rightarrow \xi$)
 - used to measure s and \overline{s} quarks (s \rightarrow c)
- NC DIS $(v_{\mu} N \rightarrow v_{\mu} X)$
 - formalism is the same ($m_l \rightarrow 0$, add'l couplings $\sim \sin^2 \theta_w$)

added effects

- target mass effects, radiative corrections, NLO (gluons, R_L)

Ultra High Energy

- ν 's with E_{ν} > TeV
- observation of UHE cosmic rays (>10¹⁰ GeV) gives hope for a flux of UHE neutrinos (Jenni Adam's talk)
- use DIS ν_{μ} N $\rightarrow \mu^{-}$ X to detect UHE ν 's

AMANDA, Anita, Antares, IceCube, NESTOR, RICE, etc.

It's right

Ultra High Energies

- no man-made machines (existing or planned) can produce particles this high in energy
- use same DIS σ_v formula but extrapolate to very high E's, far beyond currently available data

Q² ~
$$M_W^2$$
 due to presence of propagator term
$$x \sim \frac{M_W^2}{2 \text{ME}_{\text{v}}}$$

$$\frac{1}{(1+Q^2/M_{W,Z}^2)^2}$$

• extrapolation of PDFs to **small x** is crucial at highest energies (ex., E_v<10¹² GeV means Q²~10⁴ GeV², x~10⁻⁸ ... large extrapolation!)

Ultra High Energies

differences only at very
 high energy due to
 differences in
 small x extrapolation

damping due to propagator

$$\frac{1}{(1+Q^2/M_{W,Z}^2)^2}$$

linear rise up to $\sim 10^4 \text{ GeV} \sim \text{M}_{\text{W}}^2$

impressive that can predict across 11 orders of magnitude in Ε_ν!

it's high

Ultra High Energy

• over E range of interest for v astronomy, can generally neglect v interactions with e-'s in earth in comparison to vN; one exception:

Butkevich et al., Z. Phys. C 39, 241 (1988)

$$\overline{v}_{e} e^{-} \rightarrow W^{-}$$

- resonance at E_v of $M_W^2/2m_e \sim 6x10^6$ GeV
- same process first suggested by Glashow (1960) as a means to directly detect W boson

Physics Beyond SM

why is this important to predict?

Sarcevic, TeV Astrophys Workshop, Madison ('06)

- at very high E, σ(vN)
 can depart substantially
 from SM if new physics
- probes new physics at E's well beyond LHC
 - LHC ~ 14 TeV
 - UHE v > 100 TeV

Overall Scorecard

- low energy (<100 MeV) inverse β decay, ν-deuteron
 - σ known to 1% or better (<10 MeV)
 - solar, reactor, SN v's

SNS

- intermediate energy (~1 GeV) QE, single- π
 - σ typically known to 20-40%
 - more complicated region + nuclear effects
 - atmospheric, accelerator-based ν's

- MiniBooNE
- SciBooNE
- MINOS ND
- MINER_VA

- high & ultra-high energy (100's GeV+) DIS
 - can accurately predict σ to a few-% all the way up to ultra-high energies (~10⁷ GeV!)
 - v astronomy

What You Should Take Away

- $v \sigma$'s are small & there are multiple processes that contribute
- σ_{v} are at the core of everything; absolutely critical for knowing:
 - how many v interactions you should expect (N_v)
 - what those v interactions will look like (final state)
- need to know σ_v across a large energy range (MeV to TeV)
- σ_v well known at low and high energy, less so in the middle (nuclear effects & FFs complicate things, easier if scatter off electrons)
- the demands on our knowledge of $\sigma_{\rm v}$ will be even greater in the future ...

Hope You Will Play a Role

- in the future, hopefully you will play a role in either:
 - better measuring these v cross sections (if you're an experimentalist)
 - developing improved theoretical calcs (if you're a theorist)
- there is certainly a lot more work to do!

 if you're interested, there is an entire workshop series devoted solely to this topic (NuInt)