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Two (or more) Parameters of Interest

Held over from Lecture 1:
Gaussian approximations

For quoting Gaussian uncertainties
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is a contour of 2AInL=1 g N\ e : ]
A ' |/ ({inner
> % T / \\'\- !
g; / \\\-._ pUUL
‘ , \ —\/_‘¢
<—():]—><—0:’—> ~o \
6, 6

Figure 33.5: Standard error ellipse for the estimators @; and 9} In this case the
correlation is negative.

Table 33.2: Ax? or 2AIn L corresponding to a coverage probability 1 — « in the

For displayin g large data sample limit, for joint estimation of m parameters.
J0|nt estimation (1-a) (%) m=1 m=2 m=3
of several parameters 68.27 1.00 230  3.53
> 90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
From the 2011 95.45 4.00 6.18 8.03
PDG Statistics 99. 6.63 9.21 11.34
Review 99.73 9.00 11.83 14.16

http://pdg.lbl.gov/2011/reviews/rpp2011-rev-statistics.pdf
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Parameter 2

1D or 2D Presentation

68%

2.3

Parameter 1
| prefer when showing a 2D plot, showing the

contours which cover in 2D. The
2AInL=1 contour only covers for the
1D parameters, one at a time.
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A Variety of ways to show 2D Fit results
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Lecture 2: Data Analysis Issues
and Systematic Uncertainties

e Example Analyses using approximate
Gaussian statistics:
* Large Data Set Cross Section Measurement
* A prominent mass peak on a smooth background

e TGC analysis at LEP2 with multiple peaks in the
likelihood

 Multivariate analyses
 Neural Networks
e Boosted Decision Trees
 Matrix Elements

T. Junk HCPSS 2012, Lecture 2



Measuring a Cross Section

Number of observed Background:
events: counted Measured from data /
calculated from theory

obs
gmeas = L= [ Lai

ﬁ/leasured Cross section ©
Efficiency:

optimized by

experimentalist

/

Integrated Luminosity:
Determined by accelerator,
trigger prescale, ...

Many thanks to B. Heinemann
for the slides



Uncertainty on the Measured Cross section

* You will want to minimize the uncertainty:

5o | ONZ, +0N2e (oL 2+ Se )
a N \ (A‘Bbg —j\rgg)g | ﬁ €

“Fractional Uncertainties Add in Quadrature”

 Thus you need:

— Ngps-Ngg small (l.e. N, large)
* Optimize selection for large acceptance and small background
— Uncertainties on efficiency and background small

* Hard work you have to do

— Uncertainty on luminosity small
* Usually not directly in your power

Slide from B. Heinemann, 2008
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Luminosity Measurements and Uncertainties

 Many different ways to measure it:
— Beam optics
* LHC startup: precision ~20-30%
e Ultimately: precision ~5%
— Relate number of interactions to total cross section
* absolute precision ~4-6%, relative precision much better

— Elastic scattering:
e LHC: abslute precision ~3%

— Physics processes:
* W/Z: precision ~2-3% ?

e Need to measure it as function of time:
— L(t) = L, e/ with T =14h at LHC and L, = initial luminosity

Luminosity Estimates are a “Shared Resource” — One example of a calibration shared
by many groups

T. Junk HCPSS 2012, Lecture 2 Slide from B. Heinemann, 2008 3



Your Luminosity

Luminosity (1/pb)
5000 — ‘

* Your data analysis luminosity
is not equals to LHC/Tevatron 4o

/

luminosity! 3000 ? -
* Because: 2000 / -
— The detector is not 100% ook & oot E
efficiency at taking data // -

— Not all parts of the detector are 62000 3000 4000 5000 6060

store number

always Operatlonal/On Data Taking Efficiency

— Your trigger may have been off / ;0;; ' w VL I S S A repdn

prescaled at times £ 08t i : E

— Some of your jobs crashed and 075 4 E
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Slide from B. Heinemann, 2008
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A Problem with that Uncertainty Formula

b [oNZ. +oNBg [(5L)7) (5e)’
o\ (Nops — Npc)? L €

Both the integrated luminosity in the
denominator and the N in the
numerator depend on the luminosity
estimate, because some backgrounds are
estimated using

Theory cross section x Integrated Luminosity
x branching ratios x cut acceptance.

Other backgrounds may be estimated using
data-based techniques (more on this later)

- Missing a correlation!

T. Junk HCPSS 2012, Lecture 2
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Handling Correlations the Easy Way
Nobs-NBG

gmeas =

L-€

1) Identify independent sources of systematic uncertainty. Usually they have names and are
listed in tables of systematic uncertainties. These are called nuisance parameters

Luminosity estimate depends on:

* Inelastic pp (or ppbar) cross section
* Luminosity monitor acceptance

or, if using a data-based luminosity extraction

* Inclusive W or Z cross section theory prediction, and
* Lepton identification systematic uncertainty

Note — you cannot measure the inclusive Z cross section using the second method.

continued:

T. Junk HCPSS 2012, Lecture 2 11



Handling Correlations the Easy Way
Nobs'NBG

og™meas =
L-€
2) Evaluate the impact of each nuisance parameter on your answer, holding the others
fixed: do"es
dv,

were v, is the it" nuisance parameter.

Tip — you can often collect nuisance parameters together if they all affect the result

in the same way. “Integrated Luminosity” is a perfectly good nuisance parameter most
of the time, as predictions depend on it.

But sometimes you can’t. Suppose pp—=>Z is one of the background sources, and you are
using the measured Z rate to constrain the luminosity in the data.

These can even be non-overlapping data. Z->ee constrains the lumi, while Z->hadrons is a
background, for example.

Then the inclusive Z cross section assumed becomes the nuisance parameter (and its
impact partially cancels!)
T. Junk HCPSS 2012, Lecture 2
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Handling Correlations the Easy Way

Tip: Sometimes uncertainties are correlated in a nontrivial way:

Example: Two sources of background are estimated using data control samples,
but these control samples share some but not all of their data events.

Suggestion: Always seek an uncorrelated parameterization. We know that those
control samples are partially correlated due to the overlaps. We estimate the
correlation by knowing the fractions in the exclusive and inclusive samples.

You can always break down partially correlated uncertainties into pieces —
a fully correlated piece and uncorrelated pieces.

Overlap

In this case, Exclusive A,
Exclusive B, and Overlap may
be the nuisance parameters for evaluating

Sample A the stat. uncertainty from these control samples
Sample B

T. Junk HCPSS 2012, Lecture 2 13



Handling Correlations the Easy Way

Putting it all together: 2
meas

Once you have an meas do

uncorrelated basis, just 00 = E 6V,-

add the uncertainties in V i dVl-

quadrature.

A nuisance parameter is any value you assumed in order to do your analysis which
you do not know the exact value of (usually all of them).

Much of the work is devoted to identifying a proper set of nuisance parameters,
and constraining their possible values, preferably with data.

We must frequently ask theorists for help!

T. Junk HCPSS 2012, Lecture 2 14



Example of Data-Driven Background Estimates

Seek Z->ee events, but there are misreconstructed W(—>ev)+jets events
where Missing E; is small and a jet fakes an electron

Typical cuts: Require small Missing E;, opposite-sign electrons, electron
isolation, centrality, and P; (usually > 20 GeV), and m_, close to m,

Standard technique: Count same-sign events passing all the other
requirements.

Assumption: Jets faking electrons do so with random charge assignments:
Can just use the count of same-sign events as the W+jets background.

A hole in the assumption: The charge of the W is anticorrelated with the charge
of the leading particles in the accompanying jet.

Measure the hole: Using a sample purified in W+jets (high missing E;),

measure the charge correlation between the W—>e and “fakeable objects”
in the accompanying jets.

T. Junk HCPSS 2012, Lecture 2 15



Acceptance / Efficiency

* Actually rather complex:
— Many ingredients enter here
— You need to know:

Number of Events used in Analysis

8total -

Number of Events Produced
* Ingredients:

— Trigger efficiency

— ldentification efficiency
— Kinematic acceptance
— Cut efficiencies

Slide from B. Heinemann, 2008

T. Junk HCPSS 2012, Lecture 2
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Trigger Efficiency

Triggers typically select events with

* lsolated leptons with p;> a threshold (20 GeV typical at the Tevatron)

* Missing Transverse Energy (various thresholds, depending on other objects in
the event

* Jets —total energy, reconstructed jet counts above E; thresholds

Triggers are difficult to model in Monte Carlo

* Rely on partially reconstructed information — whatever an FPGA can compute
in a few microseconds

* Triggers sometimes get updated

* Trigger hardware sometimes fails and gets repaired/upgraded

Most reliable way to estimate trigger efficeincy — with datasets collected on
overlapping triggers.
* Selects some fraction of events also selected by desired trigger.

Check what fraction of events passed the target trigger that “should” have.

Example: Using the isolated lepton trigger to check the MET + jets trigger



Trigger and ID Efficiency fore sand ' s

. . CDF Level 2 Calorimeter
e Can be measured using Z' s with

efficiency
tag & probe method _ N DS i
o L €irig™ N-.  Twf 4 ises 117
— Statistically limited ID F , |
: : " P9-P13
* Can also use trigger with more B: RS ARAREARED
loose cuts to check trigger with asel- (/ Ce=g7 elﬂgval
tight cuts to map out .
— Energy dependence 1S S AN I A
E; (GeV)
* turn-on curve decides on where you
pUt the cut [ Efficiency vs. Phi [CMUP] [bhmukpP32] |

— Angular dependence 2

* Map out uninstrumented / inefficient i .
£ TR

parts of the detectors, e.g. dead et
chambers 4
0.6 +
— Run dependence | + o
* Temporarily masked channels (e.g. 025. e
due to noise) oot r s e s sy

Slide from B. Heinemann, 2008
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Jet Trigger Efficiencies
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* Bootstrapping method:

— E.g. use MinBias to measure Jet-20, use Jet-20 to measure Jet-50 efficiency
.. etc.

* Rule of thumb: choose analysis cut where €>90-95%
— Difficult to understand the exact turnon

T. Junk HCPSS 2012, Lecture 2

Slide from B. Heinemann, 2008,



Acceptance of Kinematic Cuts: Z' s

ElllllllIllllllllllllllllllllllllll|IIIIIIIIIIIIIIE 24000;—‘ I | I I T 1T ] T 1 1 I 1T 1T ] T 1 1 I T 1 1 I l_;
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50001 e 4000F E
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lepton P, (GeV) -6 4 -2 0 2 4 6
leptonn

* Some events are kinematically outside your measurement range

e E.g. at Tevatron: 63% of the events fail either p; or n cut
— Need to understand how certain these 63% are

— Best to make acceptance as large as possible
* Results in smaller uncertainties on extrapolation

T. Junk HCPSS 2012, Lecture 2
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Parton Distribution Functions

MSTW 2008 NLO PDFs (68% C.L.)

51.2- \ L II\IHII T T IIIIIII T T l:
%ﬂ 1: ‘{:i::.. \l,Qz = 104 GeV2 ]
0.8F
0.6 0.6
0.4 0.4
0.2 0.2
0 L Lo L LIl - 0 1 I L 111l Ll
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X X

Affect analysis in two ways:
1) Changes the cross section prediction (not a problem for the signal, that’s what

we’re measuring! But an issue for backgrounds).
2) Changes the differential distributions — mostly via p, and n

3.5

619, . BR(W*= I'v) [nb]

2.5

- ATLAS 7
L / |
- I Ldt=33-36pb'
| @ Data2010Ns=7TeV) mmm total uncertainty
O MSTWo8 —@-sta®sys
T[] HERAPDF1.5 uncertainty T
— /A ABKMo09 68.3% CL ellipse area
| > JR09 |
1 1 I 1 1 1 [ 1 1 1 I 1 1
1.8 2 2.2

o4 . BR(W = IV) [nb]

Measurements of standard-candle processes such as pp—=>W and Z constrain PDF’s

T. Junk HCPSS 2012, Lecture 2



Factorization and Renormalization Scales

0.5
April 2012

Fixe-order matrix-element calculations

in Monte Carlo generators (Pythia, Q)
MadEvent, Alpgen, etc) are missing 0.4
higher-order corrections.

v Tdecays (N3LO)

a DIS jets (NLO)

0 Heavy Quarkonia (NLO)

o e'e jets & shapes (res. NNLO)
e 7 pole fit (N3LO)

N pp —> jets (NLO)

03}
Parton showers cover some of this but not all.
Changing the scale at which a, is computed 0.2
changes the predicted cross sections as well
as differential shapes, giving more weight o1l
to some events than others. = QCD 0(My)=0.1184 +0.0007

1 100

? QIGev]
Visible in p; spectra in gg=>H, ppbar=>Z, etc.

Would like to constrain as many properties of background processes with data
control samples as possible.

Not possible for signals that haven’t been observed yet!

T. Junk HCPSS 2012, Lecture 2
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Jet Energy Scale (JES)

Simulation of jet energies is fraught with possible errors

* Incomplete material description

* Incorrect nuclear cross sections

* Incomplete modeling of hadronic showers

* Incorrect modeling of quark and gluon fragmentation and hadronization

JES is an important ingredient in estimating selection efficiencies if jets are
required or vetoed. Typically a jet E; threshold must be passed in order for
a jet to get identified as such.

Measurements:
* Test-beam calorimetry determinations
* In-situ calibrations

* Photon-jet balancing

* Z-jet balancing

* W=jets in ttbar events

All require extrapolations and assumptions. For example, photons+jets and Z+jets
have different quark/gluon content in the jets. W—2>jets has (almost) no b-quark

content, but we may be interested in calibrating the jet energy scale for b’s

T. Junk HCPSS 2012, Lecture 2 23



Measuring JES in situ for a top quark mass measurement

lepton(s)
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Systematic Uncertainties vs. Cross Checks

See Roger Barlow: “Systematic Uncertainties, Facts and Fictions”

arXiv:hep-ex/0207026

A typical cross-check of an analysis:

Change selection cuts, rerun analysis, see if you get a different answer.
Question: How different does it have to be before we get unhappy?

There’s a statistical component: we expect some change: tightening cuts removes
some events, loosening them adds new ones, but most will be shared.
What to expect?

There may be a genuine systematic effect, but it only samples events near the
cut being varied.
* These events may not be that important anyway
* Does not test events far away from the cut which may be more important
* If your “best” (i.e. highest s/b) events are next to cuts, then there may be
an analysis optimization issue lurking in there.

T. Junk HCPSS 2012, Lecture 2
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Systematic Uncertainties vs. Cross Checks

Varying cuts: assuming all events contribute the same amount to the answer,
the width of the expected difference (Gaussian approx) is:

Easy for computing p-values — how many sigma we are different from zero is
an estimate of how significant the discrepancy is.

If we see a 1 or 2-sigma effect? Count it as a systematic uncertainty in the result?
Roger and | say no: It’s a robustness check, not an indication that there’s a problem.

If the robustness check fails, try to identify what the assumption is in the model that’s
wrong. Model parameters are almost always uncertain: what knobs are there you
can turn that can fix the problem?

Taking it as a systematic uncertainty penalizes diligence.

Also statistically weak cross-checks would penalize the total uncertainty. Some cross
checks just are not that strong.

T. Junk HCPSS 2012, Lecture 2
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“On-Off” Example

Select events with J/(=21l) m*rt candidates. Lots of nonresonant background
whichis poorly understood a priori, but there’s a lot of it.

CDF Il 220 pb”’
6000 T n
2200 fl‘l' Typical strategy:

50001 | 51q0 ' Fit the back d

| M it the backgroun

‘} 2000, +, b \ni 1 outside of the

¢ |'etr . T~ o .

4000 t 1900447 % VT signal peak,

1800 ! and interpolate

380 385 390 395 the background

| under the signal

o

re
L 1 \
GJogeteny, te0t 0""‘."“ .‘ooo..

|
.
|
¢ | . ’“..“...Q“

Candidates/ 5 MeV/c?
N w
(] @
Loie ) (@]
Q (@]

. to subtract
! it off.
1000 X(3872)
The ratio of events
0 e — in the sidebands
3.65 3.70 3.75 3.80 3.85 3.9023.95 4.00 to the background
Jiyn'n Mass (GeVic') prediction under
Guess a shape that fits the backgrounds, and fit it with a signal. the signal is called t
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“Weak” Sideband Constraints

o~ 6 r
N (o)
W 1l L nﬂ o, 1. n” H]nrmn
N 5.8 6.4 7
_g M(J/V/Q ) Flight(Q~ ) > 0. 5 cm
S 3t (b)
2 F
;i.ﬂ.ﬂ,”... I H ﬂﬂﬂ
5.8 6.4 6.6 7
M(J/wo ) Flight(Q7) > 2 cm
1.5
b (c)
L
°5.:8' 5 6z 64 65 o8 7
M(J/%) Gev/c?

FIG. 8 (a,b) The invariant mass distribution of J/¢ Q™
combinations for candidates where the transverse flight re-
quirement of the 2~ is greater than 0.5 cm and 2.0 cm. (c)
The invariant mass distribution of J/1 2~ combinations for
candidates with at least one SVXII measurement on the 2~
track. All other selection requirements are as in Fig. [5(c).

T. Junk HCPSS 2012, Lecture 2

CDF’s Q, observation
paper:

Phys.Rev. D80 (2009) 072003
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No Sideband Constraints?

Example: Counting experiment, only have a priori predictions of expected
signal and background

All test statistics are equivalent to the event count — they serve to order outcomes
as more signal-like and less signal-like. More events == more signal-like.

Classical example: Ray Davis’s Solar Neutrino Deficit observation. Comparing

data (neutrino interactions on a Chlorine detector at the Homestake mine) with a model
(John Bahcall’s Standard Solar Model). Calibrations of detection system were

exquisite. But it lacked a standard candle.

How to incorporate systematic uncertainties? Fewer options left.

Another example: Before you run the experiment, you have to estimate
the sensitivity. No sideband constraints yet (except from other experiments).

T. Junk HCPSS 2012, Lecture 2 29



“ABCD” Methods

CDF’s W Cross Section Measurement

) Iso4 vs Met
1.8 S_A , C CDF Run Il Preliminary
- ' 1
- 160 f L ~72pb
2 1.4
& 1.2 QCD Background _ _B
2 0.8
o 06 o | |
L .48 = o *W*— e v Candidates
Bo'2 et Bt P TR
0 10 20 30 40 50 60 70 80 90 100
Want QCD contribution to Missing Transverse Energy (MET)
the “D” region where signal
is selected.

Assumes: MET and ISO are uncorrelated sample by sample
Signal contribution to A,B, and C are small and subtractable
T. Junk HCPSS 2012, Lecture 2

Isolation fraction=

Energy in a cone of
radius 0.4 around
lepton candidate
not including the
lepton candidate /
Energy of lepton
candidate

ABCD methods are
really just on-off
methods where

T is measured using

data samples 30



. “ABCD” Methods
vantages

e Purely data based, good if you don’t trust the simulation
* Model assumptions are injected by hand and not in

a complicated Monte Carlo program (mostly)
* Model assumptions are intuitive

Disadvantages

* The lack of correlation between MET and ISO assumption may be false.
e.g., semileptonic B decays produce unisolated leptons and MET from the
neutrinos.
* Even a two-component background can be correlated when the contributions aren’t
by themselves.
» Another way of saying that extrapolations are to be checked/assigned sufficient
uncertainty
* Works best when there are many events in regions A,B, and C. Otherwise all the
problems of low stats in the “Off” sample in the On/Off problem reappear here.
Large numbers of events = Gaussian approximation to uncertainty in background in D
* Requires subtraction of signal from data in regions A, B, and C = introduces
model dependence
* Worse, the signal subtraction from the sidebands depends on the signal rate
being measured/tested.
- A small effect if s/b in the sidebands is small
- You can iterate the measurement and it will converge quickly

T. Junk HCPSS 2012, Lecture 2
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The Sum of Uncorrelated 2D Distributions may be Correlated

&

Knowledge of one variable helps identify which sample the event came from
and thus helps predict the other variable’s value even if the individual samples
have no covariance.

T. Junk HCPSS 2012, Lecture 2 32



Underlying parameters may not scale the observation linearly

meas Nobs-NBG Thlsiass_umes a signal is
Y - — adding incoherently (QM sense)

to a background.
L-€

But: Rates are proportional to matrix elements squared.
Coupling parameters come in quadratically at least!
Sometimes signals and backgrounds intefere with each other qguantum mechanically!

Example: gg2>H>WW interferes with gg=>WW. cCampbell, Ellis, and Williams, JHEP 1110, 005 (2011)

Another example: Seeking charged Higgs bosons in top quark decay. By changing the
branching ratios, the effect of the presence of new physics can reduce the expected data counts.
Negative signal? Or just less “background”? More on this later.

T. Junk HCPSS 2012, Lecture 2 33



Example of a Multimodal Likelihood Function

LEP2 Triple Gauge Coupling
Constraints from 1998

http://lepewwg.web.cern.ch/LEPEWWG/lepww/tgc/

With more data, ambiguities were resolved, so |
had to go back a ways to find a good example.

-AlnL

Preliminary
ALEPH o +0.28"0%
L3 —— -0.43'0%°
OPAL ® +0.25%0%]
LEP —— -0.04723°
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Multivariate Analyses

These are an important tool for optimizing sensitivity

* Reduce expected uncertainties on measurements
* Raise chances of discovering particles that are truly there
* Improve the ability to exclude particles that are truly absent

BUT:

* There are many ways to make a mistake with them: More work!
e Optimizing them
* Bestinput variables
* Best choice of MVA
* Validating them
* Validate modeling of inputs and outputs
e Check for overtraining
* Propagate systematic uncertainties through them

* Rates
e Shapes
* Bin-by-bin

T. Junk HCPSS 2012, Lecture 2
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When MVA’s provide the most benefit

If there are several reconstructed quantities per event that are useful for separating
signal from background or measuring properties of signal.

If there’s just one such variable, there can be no additional gain.

MVA’s reduce dimensionality — start with many reconstructed quantities and reduce
them down to one.

My favorite example — single top at the Tevatron

b) We know all about the
a) top quark — mass spin,
couplings.

s/b is small ~1:15, and
uncertainty on background
is about 30%. Need

some way to purify signal
and background

36

T. Junk HCPSS 2012, Lecture 2



Backgrounds to Single Top Production

T. Junk HCPSS 2012, Lecture 2



Single Top at the Tevatron MVA Example

Select events with W—=>1lv, two or three jets, one or more b-tags

Not an easy bump-on-a-background search —the bump is too wide!
(poor mass resolution due to missing neutrinos)

e
—

Normalized Event Fraction

W + 2 Jets, 1 b-Tag

CDF Il Preliminary 7.5 fb™

0.15

0.05

— Single Top
tt
W+HF
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- - [l Diboson
~ 400\ = Qcb

n i

e
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Events

400
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W + 2 Jets, 1 b-Tag
400 -+ CDF Data
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[ Z+Jets
[l Diboson
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Q (lep) * n (I-jet)
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variable (suggested

by C.P. Yuan)
Qxn
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Normalized Event Fraction

Normalized Event Fraction

Single Top at the Tevatron MVA Example

CDF Il Preliminary 7.5 fb™

W + 2 Jets, 1 b-Tag

0.2

o .'

W + 2 Jets, 1 b-Tag

—Single Top
tt
W+HF
—W+LF
Z+Jets
— Diboson
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5 0 05 i
Jet Flavor Separator
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100
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T. Junk HCPSS 2012, Lecture 2

c%' -+ CDF Data
~ Il Single Top
- s Ot
CW+HF

G 400 B W.LF

o i O Z+Jets
= I Diboson
~—~

m o

T

€ 200

> |

L

B-tag flavor
separator —
W+1-tag events

are full of mistagged
light-flavor and
charm. This helps
separate them

m;; Surprised us a bit
since it is not
characteristic of
single top. Butit

is for the
background!

(gluons are massless)
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CDF’s 7.5 fb! Single Top MVA output

0.15 W + Jets, > 1 b-Tag CDF Il Preliminary 7.5 fb” W + Jets, > 1 b-Tag CDF Il Preliminary 7.5 fb”'
g i — Single Top ..9 800
= tt c
|3 (]
© W+HF >
s — W+LF w 600
c 0.1 Z+Jets - [ Z+Jets
4 - — Diboson I Diboson
1T} QCD £Jacb
ks
N
s 0.05}
£
e
o
<
0 A A ' A ' A A ' A ' A A l A ' A A 1 1 1 1 _— _______
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

NN Discriminant NN Discriminant

You can cut and count using the MVA output and use the
statistical methods we discussed, or do something more

sophisticated.
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Checking Input Distributions to an MVA

* Relax selection requirements — show modeling in an inclusive sample
(example — no b-tag required for the check, but require it in the signal sample)

* Check the distributions in sidebands (require zero b-tags)

* Check the distribution in the signal sample for all selected events

* Check the distribution after a high-score cut on the MVA

All Channels CDF Il Preliminary 3.2 fb™

-.3 [ single top 8 5
[ [ 1t I ‘; . * .
15 300} : H Example' O~Iepton r]untagged jet In
5 v 3 CDF’s single top analysis. Good
3 i - .
8§ tTEeAg separation power for t-channel
- signal.
-0.5 0 1
NN Cutput Phys.Rev.D82:112005 (2010)
TLC 2Jets 0Tag CDF Il Preliminary 3.2 fb A
(7] 4000 TLC 2Jets 1Tag CDF Il Preliminary 3.2 fb . 4
T 2 [ W single top 302Jets 1Tag CDF Il Preliminary 3.2 fb
W 3000} k- T, ZOO?EWEMWCC z 2 [ Ewbb+wee s
0% R i fEw :
© - - £ 150 MEDiboson 1 @ 20_-W_qq a
o | @ © L Z+i T - [ Diboson s
=5 2000} 8 8 5ok 8 8 [Dzies @
T : s g g T =2 [ B7ach e
g : g g 100|__ ¢ data § .g | e data g
(&) - S 0 [ 2 © 10_ =
1000: Q s0f o (3} : g
-2 0 2 -2 0 2 0 -2 0 — 2
Q (lep) ¢ 1 (I-jet) Q (lep) ® 1 (I-jet) Q (lep) « 1 (I-jet)

highest |n| jet as a well-chosen proxy
T. Junk HCPSS 2012, Lecture 2



Checking MVA Output Distributions

* Calculate the same MVA function for events in sideband (control) regions

* For variables that are not defined outside of the signal regions, put in
proxies. (sometimes just a zero for the input variable works well if the
guantity really isn’t defined at all — pick a typical value, not one way off on the
edge of its distribution)

* Be sure to use the same MVA function as for analyzing the signal data.

Example: CDF NN single-top

NN validated using events with signal region
zero b-tag

* 0T Channels CDF Il Preliminary 3.2 fb" " All Channels CDF Il Preliminary 3.2 fb™
i M single top - - M single top 89 c
€ 6000} O _ = _ Ot 70 2
g s [ Wbb+Wce s 4 [ I Wbb+Wct 60 2
w mWe_ 5 w 300 mWe 50 K
o EWaq ° @ i B Wqq 49 5
- @ Diboson hd - @ Diboson 30 =
« 4000 [ Z+jet T (] i i (7]

o | jets o 5 [Z+jets

2 maco s 2 200 mQcD e
g - o data £ -g « data bt ,, g
3 S N
02000 £ S y 3
z s 100 E
o]
c
O
- =

7 1
NN Output
Phys.Rev.D82:112005 (2010)

0.5 1
NN Output
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Candidate Events

A Comparison in a Control Sample that is Less than Perfect

CDF’s single top Likelihood Function discriminant checked in untagged events

LF Discriminant

Strategy: Assess a shape systematic covering the difference between data and MC —

extrapolate the uncertainty from the control sample to the signal sample.

(a) Phys.Rev.D82:112005 (2010) (b)
W + 2 and 3 Jets, =1 b Tag W + 2 Jets, 0 b Tags
~ CDF Data | ..g 10° - CDF Data
10008 Etsi-i"g'e Top g 9 M single Top
1 [TIW+HF 5 w1 o’ al:
B W+LF ® % 0° [ W+HF
Il Other * o 1 I W+LF
- .75 08 085 09 095 1| + % 02
500F T g1
N ©
E O 10
2 1
Vs 10"
0.2 04 06 0.8 1 0 02 04 06 038 1

LF Discriminant

If the comparison is okay within statistical precision, do not asses an additional uncertainty

(even/especially if the precision is weak). Barlow, hep-ex/0207026 (2002).
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Another Validation Possibility — Train Discriminants to Separate Each Background

Same input variables as signal LF. LF has the property that the sum of these
plus the signal LF is 1.0 for each event. Gives confidence. If the check fails, it’s a starting

point for an investigation(,)and not a way to estimate an t(Jbr)mertainty.

Phys.Rev.D82:112005 (2010)

W+ 2 Jets. =1 b Ta
10°

W+ 2 Jets, =1 b Ta

T. Junk HCPSS 2012, Lecture 2

;;.! - CDF Data ;;.! - CDF Data
o []W+bottom o [t
IB 1 04 [[Jw+charm % II>.I 1 04 W single Top %
B wW+LF - [[Jw+bottom | 5
g 1 03 [l single Top E g 1 03 [[JW+charm E
© Dt s B Ww+LF o
'E 102 [l other b 'g 102 _ W other b
S s 8 |5
10 § 10 .zg
1
0 02 04 06 08 1 0 02 04 06 0.8 1
Lw+bottom Lﬁ
() (d)
W + 2 Jets. =1 b Tal W + 2 Jets, =1 b Ta
2 ~ CDF Data 8 ~ CDF Data
5 10° [CJW+charm g 5 10° P wW+LF E
I.l>.l 10° [[]W+bottom £ Iﬁ [Jw+bottom 2
Q Ew+LF -g o 1 03 [[JW+charm -.§
© 1 04 [l single Top & © [l single Top &
S 10° Ot s B Ot e
§ ] 02 [l Other ‘E § 1 02 [l Other §
s =
10 £ 10 :
Z z
1
0 02 04 06 08 1 0 02 04 06 08 1
LW+char|n I"W+LF

44



Model Validation with MVA’s

* Even though input distributions can look well modeled, the MVA output could
still be mismodeled.
Possible cause — correlations between one or more variables could be mismodeled
e Checks in subsets of events can also be incomplete.
A sum of distributions whose shapes are well reproduced by the theory can still
be mismodeled if the relative normalizations of the components is mismodeled.

* Can check the correlations between variables pairwise between data and prediction
* Difficult to do if some of the prediction is a one-dimensional extrapolation from
control regions (e.g., ABCD methods).

e My favorite: Check the MVA output distribution in bins of the input variables!
We care more about the MVA output modeling than the input variable modeling
anyway.

* Make sure to use the same normalization scheme as for the entire distribution —
do not rescale to each bin’s contents.

Ideally, we’d try to find a control sample depleted in signal that has exactly the same
kind of background as the signal region (usually this is unavailable).



CDF’s 7.5 fb! Single Top MVA Systematic Uncertainties

Nuisance Parameters
Listed by Name

Rate and Shape Uncertainties

Source of Uncertainty Rate Shape Processes affected

Jet energy scale 0-8% X all

Initial and final state radiation 0-6% X single top, tt

Parton distribution functions 0-1% X single top, tt
Acceptance and efficiency scale 1-7% single top, tt, diboson, Z/v*+jets
Luminosity 6% single top, tt, diboson, Z/v*+jets
Jet flavor separator X all

Mistag model X W +light

Non-W model X Non-W
Factorization and renormalizatio X Wbb

Jet n and AR distribution X W+light

Non-W normalization 40% Non-W

Wbb and Weé norm 30% Wbb, Wee

W e normalization 30% We

Mistag normalization 10-20% W +light

tt normalization 8% tt

Monte Carlo generator 3-7% single top, tt

Single top normalization ™% single top

Top mass 2-12% X single top, tt

* X indicates the sources of uncertainty from shape variation
« Sources listed below double line are used only in |Vy| measurement

T. Junk HCPSS 2012, Lecture 2
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Example MVA Methods

Coded up in TMVA — comes with recent versions of ROOT

* Feed-Forward Neural Networks (multi-layer perceptrons)

Abbreviations: NN, ANN, MLP

Boosted Decision Trees

Matrix Elements

All are just functions
of the reconstructed
event observables.

We could devise our

own functions if

it suited our needs

and we were smart enough.

These are machine derived,

so we call it machine learning.

See, for example, P. Bhat, Ann.Rev.Nucl.Part.Sci. 61 (2011) 281-309

T. Junk HCPSS 2012, Lecture 2
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A Neural Network

Hidden
Nodes

Inputs to node j have Input
weights w.. Outputs Nodes
are sigmoid functions of
the weighted inputs.
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S is any of these:

S(x) = Tan™(x),
x/sqrt(1+x?) N = T n

1/(1+exp(-) /
tanh(x)

er{(x) _»

''''''''

Or any other s-shaped function /

Main features: Nonlinearity, |
monotonicity T. Junk HCPSS 2012, Lecture 2 J .‘ I x
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Training a Neural Network

The weights w; are arbitrary. We may choose them, as well as the structure of the
network, to optimize our analysis.

We would like to classify events as signal (output = 1) or background (output = 0).

Ad-hoc figure of merit: Minimize the sum of squares of errors made by the
network:
2

E = 2 (Odesired - Oobtained )

events

Why this function?

Well, it’s easy to differentiate with respect to the weights for each event.

Back-propagation training: Loop over training events (some signal, some background)
and adjust the weights each time according to how the adjustment will improve E.

Weighted events are okay with most MVA training programs. But it’'s worth checking
to see how they respond to negative-weight events!

Adjustable parameters: “learning rate” —how big the steps in w; are scaled by the
derivative. How many events to use to train, how many spins through the training

sample to use (“epochs”)
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Training a Neural Network

Critique of standard Neural Networks:

2

* Noonereally cares about FE = 2 (Odesired — OObmmed)

events

We care about the best expected uncertainty

on cross section or property measurements

Best expected limits if a particle is not there

Best expected chances of discovery if a particle is there

* Addition of non-useful variables (random noise) can hurt overall performance
* |nputs can have very broad ranges of behavior
discrete, large ranges, small ranges, mixtures ..

(can be mitigated by clever preprocessing)

* Advantages — can make use of correlations between input variables by forming
nearly arbitrary functions of them.

Experience with them shows that it is usually better to
* Give it the best variables already as inputs
* Pre-select the data into samples so the NN has less work to do
(fewer sources of backgrond that are imporantO



Training a Neural Network

Often the question arises: How big should the training samples be?

NN training figure of merit usually results in NN output = purity of the bin,
normalized to training sample sizes.

Change the signal training fraction — change the purity of the total training sample.

But: Any invertible function of a discriminant has the same discriminating power as
the original discriminant.

-- Corresponds to a rebinning of the output.

-- So no real need for variable-size bins, as long as you can transform the variable.
Desire — separate events in high s/b bins from those in lower s/b bins

-- adding bin contents with low s/b to higher s/b ones dilutes the sensitivity

Extreme limit — put everything in one bin. Not very sensitive! We’re better
off classifying events by categories than collecting them all together.



Overtraining

If a training sample is small, and the NN has many nodes and weights, it is possible
for the NN to “learn” the properties of individual events in the training sample

and get them classified correctly all the time.
This may not be representative of any other sample (like the data).

The network may not perform as well as it thinks it is performing if only the training
sample is used to judge.

Ensure that overtraining does not affect correctness:
Use different events to train a NN and to test it.

Even if it’s overtrained, then the independent evaluation of its performance is not
systematically biased by this effect.

The NN may not be fully optimal, however.
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Example of Giving NN’s Some Help — Cascading NN Stages

All Candida}

L,’ <05

tt expert network
output

<0.5
>0.5

If+charm expert
network output

Events

0 0.25

0.5

>0.5

diboson expert network
output

0.75

Final Discriminant

<0.5
>0.5

Further help:

Event selection is lljj, wit

h m, near M,.

One or two b-tags, with loose or tight

b-tagging requirements.

Split sample up into b-tag categories:

Tight-Tight
Tight-Loose
Single Tight
Loose-Loose

Events/Bin

200

150

100

50

CDF’s

ZH-2>1lbb search

CDF Run Il Preliminary 9.45/fb

[ All-SubChannels

I

||

1 *+ data
T 7+If
] Z+bb
Z+cc
tt

] 77
1wz
1 ww

’ fake Z
1 [[] zu 120 x 50
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(Boosted) Decision Trees

Original work by J. Friedman in the
1980’s

Look through the list of input variables;

F P Try sliding a cut along each one and find
the cut on a variable that maximizes
the purity difference on both sides of
the cut.

P F P “Gini index” — p(1-p), where p=purity
zero for perfect separation.

Iterate the search for the best cut on the
best variable for each subset of events
thus divided. Stop when you run out

of enough MC to predict the contents

of a sample.

* Advantages over NN’s: not as sensitive to the addition of “noise” variables —
they just never get cut on
 The Giniindex is also just a proxy for what we really care about.



Boosting Decision Trees

Decision tree training rather sensitive to random fluctuations.

Two cuts which are almost as good can get re-ordered in the training
process based on the presence of a small number of training MC events.

The first cut has a profound impact on the behavior of the rest of the tree

Would like to retrain many trees and average the behavior — knock off the sharp
edges.

Retrain after reweighting events that have been misclassified: Boost their weights
so that further retrainings have a better shot at classifying them properly.

Sort bins by purity and average the resulting discriminants.
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Matrix-Element Discriminants

e Calculate probability density of an event resulting
from a given process

Phase space factor:
Integrate over unknown

or poorly measured

quantities Parton distribution functions
H — 2 f(ql )f(Q2 )T
P(pl 7p/lﬁp/2) _jdplldpj2dpv Z¢4|M(p )| /Vjet( jet? parl)
comb | ql H QZ |
Inputs: Matrix element: Trarl:fer fuP?tlons:
lepton and jet 4-vectors - Different for each process. det ctcounff Oi .
no other information Leading order, obtained from SUSEHel SARSEES 1T
needed! MadGraph measurement of jet

energy

e The input variables are the same for all matrix

elements — adding a new matrix element requires

more calculation but does not use any different
information from the data



Matrix-Element Discriminants

In principle, nothing performs better than these.

If processes cannot be separated because they contribute to the final state in the same way,
this is all there is.

BUT:

* Four-vectors are imperfectly measured. Transfer functions are also imperfect.
* Only the modeling needs systematics; construction of the discriminant does not incur
additional systematics, so even if the discriminant is imperfect or naive, it’s okay —

just an optimization question.

e Matrix elements are usually leading-order only.

Particles are sometimes not reconstructed at all, even when they should be
* Some processes do not have well defined matrix elements — like data-derived fakes.

* Non-kinematic information is important, too, such as b-tags (help reduce combinatorics)

Not clear whether integrating over all possibilities or just picking the best one is the most
optimal for the purposes we set out for (more on this later).



Several Analyses on the Same Data

 Different groups are interested in the same search/measurement using the same
data.

* May have slightly different selection requirements (Jet energies, lepton types,
missing Et, etc).

e Usually have different choices of MVA or even training strategies for the same MVA
* Always will give different results!

 What to do?

* Pick one and publish it — criterion: best sensitivity. Median expected limit,

median expected discovery sensitivity, median expected measurement uncertainty.
How to pick it if the result is 2D? Need a 1D figure of merit.

* Can check consistency with pseudoexperiments. A p-value using A(measurement)
as a test statistic. What’s the chance of running two analyses on the same data
and getting a result as discrepant as what we got?

* Combine MVA’s into a super-MVA

* Keeps everyone happy and involved
e Usually helps sensitivity
* Requires coordination and alignment of each event in data and MC
* Easiest when overlap in data samples is 100%. Otherwise have to break
sample up into shared and non-shared subsets and analyze them separately
* What not to do: Pick the one with the “best” observed result. (LEE!)



An Example of Running Three Analyses on the Same Events
in Monte Carlo Repetitions

LF-ME 58.9%

ME-NN 60.8%

| h_corrME_LF (0.589) | h_corrME_LF

Entries 20000

w 3\_ Meanx 1.006

= o Meany 1.005

2.5 ; RMSx 0.3184

o RMSy 0.2433
20
1.5F
1E
0.5F
of
0.5

salasselonsslosss

| h_corrME_NN (0.608) |

LF-NN 74.1%

h_corrME_NN

Entries 20000

w 3 - Meanx 1.005

= - Meany 1.005

25E RMSx 02731

a RMSy 0.2433
2
1.5F
1=
0.5
oF
0.5

[ h_corrNN_LF (0.741) | h_corrNN_LF

=
=

3

25

2

1.5

1

0.5

0

-0.5

Entries 20000

Meanx 1.006
Meany 1.005
RMS x 0.3184
RMSy 02731

Different questions can be asked: What's the distribution of the maximum difference
between the measurements any two teams? What’s the quadrature sum of the

pairwise differences? Condition on the sum? (Probably not..)
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