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Lecture 4: Bayesian Inference,

Binning, Smoothing
* Bayesian (re)definition of probability
* Handling Systematics

e Cross Section Measurements and Limits
* Fitting vs. Integrating

* Binning advice
* Density Estimation
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Reasons for Another Kind of Probability

e So far, we've been (mostly) using the notion that probability is
the limit of a fraction of trials that pass a certain criterion to total trials.

e Systematic uncertainties involve many harder issues. Experimentalists

spend much of their time evaluating and reducing the effects of
systematic uncertainty.

e We also want more from our interpretations -- we want to be able to make
decisions about what to do next.

e Which HEP project to fund next?
e Which theories to work on?

e Which analysis topics within an experiment are likely
to be fruitful?

These are all different kinds of bets that we are forced to

make as scientists. They are fraught with uncertainty,
subjectivity, and prejudice.

Non-scientists confront uncertainty and the need to make decisions too!



Bayes’ Theorem

Law of Joint Probability:

p(A and B) = p(A|B)p(B) = p(B|A)p(A)
Events A and B interpreted to mean “data” and “hypothesis”
L(datal{v})m(v)

| data) =
p(tv}|data) [ L(data 1 {vHm({v'Hd{v'"}

{x} = set of observations
{v} = set of model parameters

A frequentist would say: Models have no “probability”. One model’s true,
others are false. We just can’t tell which ones (maybe the space of considered
models does not contain a true one).

Better language: p({v} | data)

describes our belief in the different models parameterized by {v}



Bayes’ Theorem

1s called the “posterior probability” of
P ({V} | data) the model parameters

gt({Vv}) is called the “prior density” of the model parameters

The Bayesian approach tells us how our existing knowledge before we do the
experiment 1s “updated” by having run the experiment.

This is a natural way to aggregate knowledge -- each experiment updates
what we know from prior experiments (or subjective prejudice or some
things which are obviously true, like physical region bounds).

Be sure not to aggregate the same information multiple times! (groupthink)
We make decisions and bets based on all of our knowledge and prejudices
“Every animal, even a frequentist statistician, is an informal

Bayesian.” See R. Cousins, “Why Isn’t Every Physicist a Bayesian”,
Am. J. P., Volume 63, Issue 5, pp. 398-410



How | remember Bayes’s Theorem

p(datalhypothesis) x p(hypothesis)

p(hypothesis|data) =

[

p(data)
t

“Prior belief

Posterior “PDE” Likelihood Function distribution”

(“Credibility”) (“Bayesian Update™)

Normalize this so that

/p(hypothesis\data)d(hypothesis) =1

for the observed data
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Bayesian Limits

Including uncertainties on nuisance parameters 6

/ Typically {r) is constant
L'(datalr) = fL(data | 7,0)7t(0)d0  other options possible.

Sensitivity to priors a

where 7{6) encodes our prior belief in the values of

the uncertain parameters. Usually Gaussian centered on
the best estimate and with a width given by the systematic.

The integral is high-dimensional. Markov Chain MC integration is
quite useful! Look up “Metropolis-Hastings Algorithm” on Wikipedia

concern.

Useful for a variety of results:

CDF Run Il Preliminary, L=3.6 fb"

L'(r)xa(r)

1
o Observed
Limits: ) g ol Limit

lim ‘© -
c L
[ L'(data | Py (r)dr 8 o
Qo
0.95=-2 T o
8 I

fL’(dCll‘a | I’)J‘L’(I’)dl’ = 0-2:— v 5% of integral

% 1 2 3

Mean 0.5284

RMS 0.4487

m, =160
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Bayesian Cross Section Extraction

same handlingof 1 (qatq | r) = [ L(datar,0)m(6)d6

nuisance parameters

as for limits
Thigh —
The measured _ +(Thigh = Tmax )
, —
fL (data | r)zt(r)dr cross section r max—(r._ —r, )

0.68 = - and its uncertainty
f L'(data |\ r)z(r)dr
0

CDF Run Il Preliminary, L=3.2 !

+0.8
Ogt =16 5, Pb

Usually: shortest interval containing 68%
of the posterior

(other choices possible). Use the word
“credibility” in place of “confidence”

Marginalized Posterior (arb units)

If the 68% CL interval does not contain zero, then .
the posterior at the top and bottom are equal o,%0, (0)
in magnitude.

The interval can also break up into smaller pieces! (example: WW TGC@LEP2
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Extending Our Useful Tip About Limits

It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, and no
systematic uncertainties, then the limit will be 3 signal events.

Call s=expected signal, b=expected background. r=s+b is the total prediction.

O_
re’

0!

- _ e—(s+b)

L(n=0,r)= =e

[ L'(data\r)z(r)dr s+
0.95 = = b)"oo = m

f L'(data |\ r)m(r)dr ~€ ‘o

0

Nim

The background rate cancels! For O observed events, the signal limit does not
depend on the predicted background (or its uncertainty). This is also
true for CL, limits, but not PCL limits (which get stronger with more background)

If p=0.05, then r=-In(0.05)=2.99573
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A Handy Limit Calculator

DO (http://www-d0.fnal.gov/Run2Physics/limit_calc/limit_calc.html)
has a web-based, menu-driven Bayesian limit calculator for a single
counting experiment, with uncorrelated uncertainties on the
acceptance, background, and luminosity. Assumes a uniform prior on

the

signal strength. Computes 95% CL limits (“Credibility Level”)
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Data: 10

Background: 5 +- 1
Efficiency: 1.0 +- 0.1
Luminosity: 1.0 +- 0.0

The cross section 95% CL upper limit is 12.666
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Systematic Uncertainties

Encoded as priors on the nuisance parameters t({0}).

Can be quite contentious -- injection of theory
uncertainties and results from other experiments --
how much do we trust them?

Do not inject the same information twice.

Some uncertainties have statistical interpretations --
can be included in L as additional data. Others are
purely about belief. Theory errors often do not have
statistical interpretations.



Integrating over Systematic Uncertainties Helps
Constrain their Values with Data

L'(datar) = f L(data | r,0)m(6)d6

6000 CDF Il 220 pb”'
Nuisance parameters: 6 2300 :
Parameter of Interest: r 5000] | :22 fl
t 2000] b, W |
40001 | ygpobt T T 1t
Example: suppose we have 1800
3000 380 385 390 3.95

a background rate prediction
that’s 50% (fractionally) uncertain

.
*, sPe%*,

ageteny, 000t (00t et teece 00
oy o..b..m“' g * < o e

Candidates/ 5 MeV/c?
S
(@)
et ]

-- goes into w(0). But only a PR
narrow range of background rates 1000 X(3872)
contributes significantly to the )

integral. The kernel falls to zero rapldly 365 3.70 3.75 3.80 3.85 3.90 3.95 4.00
e 2
outside of that range. Jyn'n Mass (GeV/c”)

Can make a posterior probability distribution for the background too --
narrow belief distribution.
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Coping with Systematic Uncertainty

e “Profile:”
« Maximize L over possible values of nuisance parameters
include prior belief densities as part of the y? function
(usually Gaussian constraints)

e “Marginalize:”
 Integrate L over possible values of nuisance parameters
(weighted by their prior belief functions -- Gaussian,
gamma, others...)
» Consistent Bayesian interpretation of uncertainty on nuisance
parameters

« Aside: MC “statistical” uncertainties are systematic uncertainties
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Parameter Estimation — Marginalize or Profile?

T 0 T g
é o5 7 o (I;:)e:;f\tlzg 7 - W-+Jets, NN Discriminant CDF Il Preliminary 7.5 fb™
r 1 .(7) -
20 | 2 i
. +0.57
15 ¢ Q 0.01 Osn = 3-04 ;553 pb
10 | 5 > Assuming m _ =172.5 GeV/c?
- Predicted = 10}3 =
5F  Observed=15 E %
0 T E R R R RS B B QO
-3 -2 -1N 0 o 1t 2_t . o
uisance Parameter v (units o
v ° & (005
o] L o
0 B RS,
2 O
3 ] @
@]
] o
1 0 1 A 1 A A 1
. 0 2 4 6 8
: . Single Top Quark Cross Sectiono_,,[pb]
. . . ooy e
0-3 -2 -1 0 1 2

Nuisance Parameter v (units of o)

If Pred = 10 5, and obs=15, then the likelihood would have one maximum,
but it would have a corner. MINUIT may quote inappropriate uncertainties as the
second derivative isn’t well defined.

The corner can be smoothed out — See But | know of no way

R. Barlow, http://arxiv.org/abs/physics/0406120, to get rid of the double-peak
http://arxiv.org/abs/physics/0401042 Nor should there be a way --
http://arxiv.org/abs/physics/0306138 it can be a real effect. See the LEP2 TGC measurements
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Asymmetric Uncertainties and Priors

Measurements, and even theoretical calculations, frequently are assigned
asymmetric uncertainties:

Value = 10*2 ;, or more extremely, 10*2,, (ouch). When the uncertainties have the
same sign on both sides, it is worthwhile to check and see why this is the case.

CDF Il 220 pb™'
. . . . . 6000
Example — we seek a bump in a mass distribution by counting 2200
00 I
events in a small window around where the bump is sought. 50001 | 2100 f‘;
"o 1 2000, {, Tub \untd )
= 4000 t
. . . [0} 1 1900 P~ .
The detector calibration has an energy uncertainty 2 a3
. . . 5 380 385 390 395
(magnetic field or chamber alignment for tracks, g0
or much larger effect, calorimeter energy scales for jets). égooo VR S
O ) v
. L . . 1000] X(3872)
Shift the calibration scale up — predicted peak shifts out of the

window = downward shift in expected signal prediction. 0
3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

Jlynn Mass (GeV/cz)
Shift the calibration down — predicted peak shifts out of the other
side of the window = downward shift in expected signal prediction

TRJ HCPSS Statistics Lect. 4 15



Treatment of Asymmetric Uncertainties

These cases are pretty clear — the underlying parameter, the energy scale, has a
(Gaussian? Your choice) distribution, while it has a nonlinear, possibly non-monotonic
impact on the model prediction.

The same parameter may have a linear, symmetrical impact on another model prediction,
and we will have to treat them as correlated in statistical analysis tools.

Treatment is ambiguous when little is known why the uncertainties are
asymmetric, or it is not clear how to extrapolate/interpolate them.

See R. Barlow,

“Asymmetric Systematic Errors”, arXiv:physics/0306138
“Asymmetric Statistical Errors”, arXiv:physics/0406120
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Quadratic Impacts of Asymmetric Uncertainties
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Resulting Prior Distributions for alternative handling of Asymmetric Impacts

0.45 F 05 £ o =08 c =1.2
- . - +
0.4 F -
0.35 0.4
0.3 F -
0.25 03 F
0.2 F -
- 0.2
0.15 | X
01 F 01 |
0.05 E -
0 : O ’-I I | _— 1 1 1 I 11 1 l 1
-4 -2 0 2 4
0.8 E_ 0_=O.5 0+=1.5 1.6 E_ O_=O.25 O+=2.5
0.7 F / 14 |
06 | 1.2 F
05 F U
04 F 08 F
03 F 06 F
02 F 04 F
R.Barlow 0:11111 ! | T 0_1111111 | P e
-4 -2 0 2 4 -4 -2 0 2 4
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Even Bayesians have to be a little Frequentist

e A hard-core Bayesian would say that the results of an
experiment should depend only on the data that are observed,
and not on other possible data that were not observed.

Also known as the “likelihood principle”

e But we still want the sensitivity estimated! An experiment

can get a strong upper limit not because it was well designed,
but because it was lucky.

How to optimize an analysis before data are observed?

So -- run Monte Carlo simulated experiments and compute
a Frequentist distribution of possible limits. Take the median--
metric independent and less pulled by tails.

But even Bayesian/Frequentists have to be Bayesian:

use the Prior-Predictive method -- vary the systematics on eachc
pseudoexperiment in calculating expected limits. To omit

this step ignores an important part of their effects.



Bayesian Example: CDF Higgs Search at m,=160 GeV (an older one)

CDF Run II Preliminary, L=3.6 fb™

: ‘ .
¢ CDF Data

wn L
- L
2
§103 3 mH=160 GeV/e [] Background 7
= F B Signal ]
!
0% . feeee =
¢ o .
10 2 “y E
1 §_ _g
af | |
10 3 m
2 : l
10 3 E
10 -3 : | | | . | .
-4 -3 -2 -1 0 1
log, ,(s/b)
CDF Run Il Preliminary, L=3.6 fo! Mean 0.5284
—
E’ 1 RMS 0.4487
X f Observed
< osf Limit
— [
1 h
— 0.6 -
5 % m, =160
= L
o I
+ 0.4
175} L
(o) L
o |
021 5% of integral
I\MIII
% 1 2 3 2 5
o*BR/SM =1

CDF Run II Preliminary, L=3.6 i

%060 AN
£ m,=160 GeV f 4
> :
=50 Signal+Backgroind ) J
g — Background I [
S0 CDE Data i
g ]
g30
& )

20

o A

0 0 2 3 4 5 6 7 8 9 10

Integrated Expected Signal

CDF Run Il Preliminary, L=3.6 fo'!

[3)]
o

e
o

LI R B LB B B N

Pseudoexperiments

30

20

10
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|

Mean 1.697
RMS 0.6185
%2/ ndf 39.35/61
Prob 0.9859
po 3864 + 1387.5
p1 0.5336 = 0.0622
p2 2.563 + 0.483
p3 3.063 + 0.289
m, =160
[ A
2 3 4 5
o*BR/SM =t
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What These Look Like for a 5.00 Observation

(a) (b)
SD + MJ Combination 200 SD + MJ Combination
210° « CDF Data " 2 * CDF Data '
8 [single Top 15 5 ------- Signal + Background
>104 BBackground | > —— Background
w ] ; w150t
2103 ¢ 4 '
g 02 04 06 038 1 - ‘."
= 402 L
2 10 5100
310 £
(&)
1 50
10
10 0
-2 1.5 1 -0.5 0 0.5 1 0 10 20 30 40 50 60 70

log,,(s/b)

Integrated Expected Signal

CDF Single Top, 3.2 fb
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Even Bayesians have to be a little Frequentist

We would like to know how the cross

section calculations behave in

an ensemble of possible experimental

outcomes.
Procedure:
* Inject a signal.

 Vary systematics on each
pseudoexperiment (which

oo 3
2.8
2.6

22
2
1.8

Measured Cross Section

1.6
14
1.2

1

integrates over them in the ensemble)
* Calculate Bayesian cross section for each

outcome and plot distribution.

* Black line is the median, not the mean
* Check the width of the distribution against
the quoted uncertainties. Specifically, the

distribution of
(meas-inject)/uncertainty

Should be a Unit-width Gaussian (when not

up against zero).

0.8
0.6
04
0.2

0

24

| |
0 02 04 06 08 1

- I 68% Confidence Interval

95% Confidence Interval

1 |

l ] ] l
12 14 16 18 2
Input Cross Section 3

This is in fact a Neyman construction!

Can do Feldman-Cousins with this

(correct for fit biases, if any).

TRJ HCPSS Statistics Lect. 4
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An Example Where Usual Bayesian Software Doesn’t Work

e Typical Bayesian code assumes fixed background, signal shapes (with
systematics) -- scale signal with a scale factor and set the limit on the scale factor

e But what if the kinematics of the signal depend on the cross section? Example --
MSSM Higgs boson decay width scales with tan?f3, as does the production cross
section.

e Solution -- do a 2D scan and a two-hypothesis test at each m,,tanf} point

events/(15 GeV/c?)

fraction/(15 GeV/c?)

CDF Run Il Preliminary (1.9/fb)

600
500
400
300
200

100

0
50

100

150

bbb
bbx
beb
bgb
m,=150

200 250 300 350
2
m,, (GeVi/c®)

CDF Run Il Preliminary

025 m, =150
F B SM no-width
0.2 B tanp=50
C [ tanp=100
015 M tanp=150
01
0.05 |-
0 L M| P TR T B | -
50 100 150 200 250 300 350
m,, (GeV/c?)

. 200

c
o]
-

tanp

95% C.L. upper limits

CDF Run Il Preliminary (1.9/fb)

180
160
140
120
100

80

60

- expected limit

o Il 1cband
4 no loop corrections 8 20 band

20 SM-like Higgs, width neglected ——  observed limit
PR STV TN Y NN VRN TN T NN TN TR TN AN ST TN SN NN Y Y S MY

100 120 140 160 180 200
m, (GeV/c?)
200 95% C.L. upper limits CDF Run Il Preliminary (1.9/fb)
180
160
140
120
100
80
60 ---- expected limit
Bl 1oband
40 no loop corrections I 20 band
20 Higgs width included ——  observed limit
%o‘ . I1£0l . .11'10. ‘ -1‘;0- I l1;0‘ I I2(|JOI

m, (GeV/c?)
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Priors in Non-Cross-Section Parameters

Example: take a flat prior in m; " /// ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, eYfiterl..f |,
can we discover the Higgs boson °f ; E
by process of elimination? g /e E
(assumes exactly one Higgs boson d ‘‘‘‘‘‘‘‘‘ SR
exists, and other SM assumptions) 2| / BlE it exciuding tooryemors
--------------- T
° 100 150 12({)0‘ 2&0 300
M, [GeV]
t — H" b search CDF Run Il Preliminary
160 Fxcluded 95 %CL m;= 175 GeV/c fLdt=193pb -1160
Example: Flat priorin R & E| . 1
. NQ120; 8% EiZIEd:dLEP " % 120
log(tanf3) -- even with no 3. H — E\
G100 E££ ££ 100
sensitivity, can set non-trivial &, .
limits.. 60 g ot oy ™ g0
10" p o '“I“1I0 o II““1I02
tan(p)

Mgysy=1000 GeV/c 2, u=-500 GeV/c %, A =A,=2000GeV/c 2, A =500 GeV/c 2
M,=0.498*M ,, M ,=M =M =M ;=M=M =M =Mgqy
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Tevatron Higgs Combination Cross-Checked Two Ways

] LLR Do
- LLR

L<8.6fb"

LLR
)
G

=
-
........
__________
.....
- Na

100 110 120 130 140 150 160 170 180 190 200
July 17,2011 my; (GeV/c?)

(».4; 10 & Tevatron Runll Preliminary . s CL Observed
= L<86fb' CL, Expected
- [ Expected =1 ©
L E [ Expected 26 | 1-CLg
S T — TR R i 68%

10!
------------ 95%

107
---------- 99.5%

107

||||||||||||||||||||||||

100 110 120 130 140 150 160 170 180 190 200

July 17, 2011 my (GeV/c?)

Tevatron Run |l Preliminary, L<8.6fb"

=

?

=10 |

E |

-l

-

(&)

R

o]

(2]

n 1

£

=

-»‘~Ir..|uly‘17,—2?1l1 o
100 110 120 130 140 150 160 170 180 190 200

mH(GeV/c )

Very similar results --

e Comparable exclusion regions

e Same pattern of excess/deficit
relative to expectation

n.b. Using CL,, limits instead of

CL, or Bayesian limits would extend the
bottom of the yellow band to zero in the
above plot, and the observed limit

would fluctuate accordingly. We’d have

to explain the 5% of m values we randomly
excluded without sufficient sensitivity.
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Measurement and Discovery are Very Different

Buzzwords:
e Measurement = “Point Estimation”
e Discovery = “Hypothesis Testing”

You can have a discovery and a poor measurement!
Example: Expected b=2x10"7 events, expected signal=1
event, observe 1 event, no systematics.

p-value ~2x107 is a discovery! (hard to explain that event
with just the background model). But have +100%
uncertainty on the measured cross section!

In a one-bin search, all test statistics are equivalent. But
add in a second bin, and the measured cross section becomes
a poorer test statistic than the ratio of profile likelihoods.

In all practicality, discriminant distributions have a wide
spectrum of s/b, even in the same histogram. But some good
bins with b<1 event



Advantages and Disadvantages of Bayesian Inference

« Advantages:
 Allows input of a priori knowledge:
 positive cross-sections
e positive masses
« (i1ves you “reasonable” confidence intervals which don’t
conflict with a priori knowledge
 Easy to produce cross-section limits
* Depends only on observed data and not other possible data
« No other way to treat uncertainty in model-derived parameters
e Disadvantages:
 Allows input of a priori knowledge (AKA “prejudice”)
(be sure not to put it in twice...)
« Results are metric-dependent (limit on cross section or
coupling constant? -- square it to get cross section).
« Coverage not guaranteed
 Arbitrary edges of credibility interval (see freq. explanation)

TRJ HCPSS Statistics Lect. 4
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Outliers

» Sometimes they’re obvious, often they are not.
» Best to make sure that the uncertainties on all points honestly
include all known effects. Understand them!

LumE30  “©F°

35
30

75 F

L. Ristori, g
Instantaneous il:
Luminosity at CDF vs. time L
(a Tevatron store in 2005) w0 [
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A Pitfall -- Not Enough MC (data) To Make

Adequate Predictions

An Extreme Example (names removed)
3.5
3

25

Illl

T]lTl’r

lTY
1

1.5

0.5
: Lpg_q =

% o1 02 03 0.

Questions: What’s the shape we are trying to estimate?
What is the uncertainty on that shape?

TRJ HCPSS Statistics Lect. 4

Cousins, Tucker and
Linnemann tell us prior
predictive p-values
undercover with 0+0
events are predicted

in a control sample.

CTL Propose a flat prior in
true rate, use joint LF

in control and signal
samples. Problem s, the

mean expected event rate
in the control sample is
n,.,+1 in control sample.
Fine binning — bias in
background prediction.

Overcovers for discovery,
undercovers for limits?

29



Some Very Early Plots from ATLAS

Suffer from limited sample sizes in control samples and Monte Carlo
Nearly all experiments are guilty of this, especially in the early days!

o~ FrFRTrrrrryrrryrrryryrrrrrorT T T '-.102 Illlllllllllllll'll.Illl||l|l[
310° Ldt~134fp'  ° DHa20(\s=7TeV) o ATLAS Preliminary
10 . Total SM Prediction ~ —— H=WW (m =170 GeV)
o - » o _ 7 TeV —4- Data H
0 ATLAS ] QCD+1— qq (Template) k) \s=7le MOWsets  [Jtop
210" E-ove [ Alpgen tt— gl p= Z/v+iet
S . B Alpgen W— (e 1)V c 10 - . . ww Bl Zy+jets
e ‘ Pg e Ldt=35pb WZ/ZZW+
$2) TF=B/A B Alpgen Z— vv — 1 W
§1°3 =PIA SUSY Point (1220,180)
L”1 Multi-Jet Control Region 1
‘0 5 jets P, > 80 GeV
1 -2 Lt L T 10‘
10" LH[ﬁ E E:
M ‘s 10°
- |.¢+
ZosE 0.0 0.5 1.0 1.5 2.0 2.5 3.
“ 2 4 6 8 102 14 16 Ag, [rad]
E7/\ H,; (GeV'™)

Data points’ error bars are not sqrt(n). What

are they? | don’t know. How about the uncertainty
on the prediction?

The left plot has adequate binning in the “uninteresting” region. Falls apart on the right-hand
side, where the signal is expected.

Suggestions: More MC, Wider bins, transformation of the variable (e.g., take the logarithm).
Not sure what to do with the right-hand plot except get more modeling events.
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Frequency

Smoothing Histograms

Dependence on Smoothing Parameter

Plot showing effect of choice of smoothing parameter”:

/1\
2 - | Red: Sampling PDF
/ Black: Default smoothing (w)
\ Blues w/2 smoothing

50 100
| |
N
N O
%
] (
T ——

I I i I . , : , Frank Porter, SLUO
2 4 6 8 10 12 14 16 lectures on statistics, 2006
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Optimizing Histogram Binning
Two competing effects:
1) Separation of events into classes with different s/b improves the sensitivity
of a search or a measurement. Adding events in categories with low s/b to events
in categories with higher s/b dilutes information and reduces sensitivity.

— Pushes towards more bins

2) Insufficient Monte Carlo can cause some bins to be empty, or nearly so.
This only has to be true for one high-weight contribution.

Need reliable predictions of signals and backgrounds in each bin
- Pushes towards fewer bins

Note: It doesn’t matter that there are bins with zero data events — there’s always
a Poisson probability for observing zero.

The problem is inadequate prediction. Zero background expectation and nonzero
signal expectation is a discovery!
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Overbinning = Overlearning

A Common pitfall — Choosing selection criteria after seeing the data.
“Drawing small boxes around individual data events”

The same thing can happen with Monte Carlo Predictions —

Limiting case — each event in signal and background MC gets its own bin.
- Fake Perfect separation of signal and background!.

Statistical tools shouldn’t give a different answer if bins are shuffled/sorted.

Try sorting by s/b. And collect bins with similar s/b together. Can get arbitrarily good
performance from an analysis just by overbinning it.

Note: Empty data bins are okay — just empty prediction is a problem. It is our
job however to properly assign s/b to data events that we did get (and all possible ones).



Events / 3 GeV

12

10

A Good Choice of Binning

CMS Preliminary {s=7TeV,L=5.05fb";ys=8TeV,L=526fb"

B * Data |
; mex
N l [ ]zy'zz ~
B | m,=126 GeV -
. X

- —l o 1 |*i-fﬁ [T i l:
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CMS H>ZZ=>4L
Bins with no data are fine!

Structures in signal and background
are clear — not all bunched
up into one bin

Sufficient signal and background
predictions in each bin. We can
interpret each event in the histogram
by giving it a s/b



A Commentonlowsandlowb

Bins with tiny s and tiny b can have large s/b (Louis Lyons: large s/sqrt(b) is suspicious)
Naturally occurring in HEP and others seeking discovery:

1) Each beam crossing has very small s and b but has the same s/b as
neighboring beam crossings. Can make a histogram of the search for new
physics separately for each beam crossing. Same s and b predictions, just
scaled down very small.

Adding is the same as a more elaborate combination if the histograms were
accumulated under identical conditions (all rates, shapes, and systematics are
the same)

2) Surveillance video catching a criminal — each frame has a small s, b, but still
worthwhile to collect each frame (and analyze them separately)



The 2011 CERN Unfolding/
Deconvolution Workshop

http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=107747

And look at the talks for Thursday, January 20, 2011 at the bottom of the page
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Available Software, Tools, Documentation

CDF Statistics Committee
http://www-cdf.fnal.gov/physics/statistics/statistics_home.html
Useful for documentation. Provides advice for common, thorny questions

BaBar Statistics Working Group
http://www.slac.stanford.edu/BFROOT/www/Statistics/

ROOSTATS
https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
A very complete toolset. | haven’t used it (but | should have). It’sin
common use at the LHC

MCLIMIT
http://www-cdf.fnal.gov/~trj/mclimit/production/mclimit.html
Used on CDF, some use on DO and LHC. Limits, cross sections, p-values,
both Frequentist and Bayesian tools

PHYSTAT.ORG
http://www.phystat.org
Maintained by Jim Linnemann. We toolsmiths really
should keep it up to date...
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Available Software, Tools, Documentation

PDG Probability and Statistics Reviews (ed. Glen Cowan)

http://pdg.Ibl.gov/2012/reviews/rpp2012-rev-probability.pdf
http://pdg.Ibl.gov/2012/reviews/rpp2012-rev-statistics.pdf

If these links get out of date, just search pdg.lbl.gov for the mathematical reviews
Excellent brief reference, but maybe a little too brief to learn the material.

Good Reads:

Frederick James, “Statistical Methods in Experimental
Physics”, 2"d edition, World Scientific, 2006

Louis Lyons, “Statistics for Nuclear and Particle Physicists”
Cambridge U. Press, 1989

Glen Cowan, “Statistical Data Analysis” Oxford Science Publishing, 1998

Roger Barlow, “Statistics, A guide to the Use of Statistical
Methods in the Physical Sciences”, (Manchester Physics Series) 2008.

Bob Cousins, “Why Isn’t Every Physicist a Bayesian”
Am. J. Phys 63, 398 (1995).
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Extra Material



Analysis Optimization in Isolation or in Combination?

Typical situation:

A measurement has a statistical and a systematic uncertainty, where the
statistical uncertainty includes “good” systematics that are constrained by the data,
and the “bad” ones never get better constrained no matter how much data are collected.

We sometimes have a choice of how to analyze marked Poisson data.

1) aggressive reconstruction making assumptions about particle distributions — more
statistical power per event at the cost of introducing systematic uncertainty

2) more model-independent analysis with fewer assumptions — less statistical power per
event but better control over systematics.

- Combination with other measurements (from other data runs or other collaborations)
is like collecting more data. Method 1 hits the systematic limit and loses weight in
the combination even though it may be the most powerful method by itself.

More general: With little data, we are more dependent on our assumptions, with more
data we can relax the assumptions and constrain our models.

Recommendation: For combinations, optimize for the large luminosity case.
TRJ HCPSS Statistics Lect. 4
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Statistical Uncertainties on Systematic Uncertainties?

Answer: No. But some systematic uncertainties are difficult to evaluate properly.

See Roger Barlow’s “Systematic errors: Facts and Fictions”,
arXiv: hep-ex/0207026

The idea: If a systematic uncertainty is estimated by comparing two data samples or
two MC samples, or data vs. MC, then if one or both of them have a limited size, then
the magnitude of the systematic can be poorly constrained.

Ideally, work harder (run more MC) to get a better prediction of the expected signal
and background, under all assumptions of systematic variation.

Monte Carlo Statistical Uncertainty is a Systematic Uncertainty
but don’t double-count it for each separate MC variation of each
nuisance parameter. Easy to do by comparing central vs. varied MC samples.

Statistically weak tests should be handed as cross checks. If they are consistent,
consider the test to have passed, but do not add systematic uncertainty.

If they fail, however, and a discrepancy between two MC’s or data and MC cannot be
understood and fixed, then a systematic uncertainty is called for.

TRJ HCPSS Statistics Lect. 4
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Bayesian Discovery?

Bayes Factor

B=L'(datalr_ )/L'(datalr=0)

ax
Similar definition to the profile likelihood ratio, but instead of maximizing
L, it is averaged over nuisance parameters in the numerator and
denominator.

Similar criteria for evidence, discovery as profile likelihood.

Physicists would like to check the false discovery rate,
and then we’re back to p-values.

But -- odd behavior of B compared with p-value for even a simple case

J. Heinrich, CDF 9678
http://newton.hep.upenn.edu/~heinrich/bfexample.pdf
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Correlations among Uncertainties — When is it
Conservative, when not?

e Within a channel — contributions that add together: including correlations
usually weakens the sensitivity (always: sensitivity is expected)

* Between channels —accounting for correlations is not conservative
One channel’s observed data becomes another “off” sample for another’s.
Have to trust all the Tt factors, and even offsets from central predictions
in order to put in these correlations.

e Overestimating the impacts of systematic uncertainty on a prediction
is not conservative if a correlation is taken into account. Can result
in underestimated systematic error on a combined result.

Example (systematic uncertainty 1 is 100% correlated, syst uncertainty 2 is 100% correlated

Measurement 1: m, =51 (systl) + 1 (syst2) Combine with BLUE: m .=2m,-m,
Measurement 2: m, =5+ 1 (systl) + 2 (syst2) 2> my. =5 1(systl) £ 0 (syst2)

Here accounting for correlation and an overestimated systematic uncertainty
results in an aggressive result.
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Binned and Unbinned Analyses

* Binning events into histograms is necessarily a lossy procedure

* |If we knew the distributions from which the events are drawn (for signal and
background), we could construct likelihoods for the data sample without resort
to binning. (Example Next page)

* Modeling issues: We have to make sure our parameterized shape is the right one or
the uncertainty on it covers the right one at the stated C.L.

* Unfortunately there is no accepted unbinned goodness-of-fit test

A naive prescription: Let’s compute L(data|prediction), and see where it falls
on a distribution of possible outcomes —
compute the p-value for the likelihood.

Why this doesn’t work: Suppose we expect a uniform distribution of events in some
variable. Detector ¢ is a good variable. All outcomes have the same joint likelihood,
even those for which all the data pile up at a specific value of phi. Chisquared catches
this case much better.

Another example: Suppose we are measuring the lifetime of a particle, and we
expect an exponential distribution of reconstructed times with no background contribution.
The most likely



95% G.L. upper limit on ¢ (pb)

Sensitivity of upper limit to Even a “flat” Prior
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Figure 1: Bayesian upper limits at the 95% credibility level on a hypothetical
cross section o, as a function of the cutoff o,,x on the flat prior for o.

L. Demortier, Feb. 4, 2005
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Example of a Pitfall in Fitting Models

 Fitting a polynomial with too high a degree
* Can extrapolations be trusted?
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