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Outline

We’ll begin with motivation for the continued study of QCD,
especially in the ongoing LHC era
Framework for QCD at colliders: the basic framework, asymptotic 
freedom and confinement, factorization and universality
Learning by doing: the lectures will be structured around three 
examples that illustrate the important features of QCD
Example #1: e+e- → hadrons at NLO; infrared singularities; 
scale dependence; jets
Example #2: deep-inelastic scattering; initial-state collinear 
singularities; DGLAP evolution; PDFs and their errors
Example #3: Higgs production in gluon fusion; why NLO
corrections can be large; effective field theory
Advanced topics (time permitting)



Status of  pQCD

•SU(3) gauge theory of QCD established as theory of Nature

•Predicted running of αs established in numerous 
experiments over several orders of magnitude

2004: Gross, 
Politzer, Wilczek

•Why do we still care about QCD?



Discoveries at the LHC I

•Some discoveries at the LHC require little to no QCD input, such as 
resonance searches in the l+l- or dijet channels



Discoveries at the LHC II

•Others rely upon shape 
differences between signal and 
background
•Measure background in 
control region, extrapolate to 
signal region using theory
•Care must be taken in both 
choice of tool and variable 
used for extrapolation



Discoveries at the LHC II

2004
Mangano et al.

•Crucial to merge parton-shower simulations with exact multi-
parton matrix elements, especially in energetic phase space regions

More in John Campbell’s lectures



Discoveries at the LHC III

•For some searches with overwhelming backgrounds, detailed 
knowledge of signal and background distributions is crucial for 
discovery.  QCD predictions become crucial



What can happen in a QCD prediction?

Theoretical predictions for collider observables are usually made
as expansions in αs, the strong coupling constant. αs(102 GeV) ~ 0.1

Dawson; Djouadi, Graudenz, Spira, Zerwas 1991, 1995

•Size of corrections can be much larger than expected



What can happen in a QCD prediction?

Theoretical predictions for collider observables are usually made
as expansions in αs, the strong coupling constant. αs(102 GeV) ~ 0.1

•Experimental cuts can dramatically change the expansion

Brein, Djouadi, Harlander 2003
Ferrera, Grazzini,Tramontano 2011

with jet veto



Why study QCD?

Many other reasons to study QCD, aesthetic (mathematical 
structure of scattering amplitudes in SQCD) and monetary 
($106 for proving Yang-Mills theories confine)
But a very practical consideration that will motivate us here
is that we can’t make sense of  LHC physics at the quantitative 
level without QCD beyond the leading order of perturbation 
theory



What is QCD?

The birth of QCD has a long and interesting history (Gell-Mann
and Zweig propose quarks; Han, Nambu, Greenberg propose
color to explain the Δ++ baryon; SLAC deep-inelastic 
scattering experiments discover real quarks)
We will just start with QCD as an SU(3) gauge theory
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gluon self-interactions 
distinguish QCD from QED



Gauges and ghosts

Like in QED, can’t invert the quadratic part for the gluon to 
obtain the propagator.  Need to add a gauge fixing term.

Unlike in QED, the resulting ghost fields interact with the gluons
and can’t be neglected

Certain “physical” gauges (axial, light-like) remove the ghosts.  
We will use Feynman gauge, λ=1, for our calculations.
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Feynman rules

Useful reference: 
Ellis, Stirling, 

Webber, QCD and 
Co!ider Physics



The QED beta function

Gluon self-couplings lead to a profound difference from QED.  
Consider the QED beta function (just the electron contribution).
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Coupling constant grows with energy; hits a Landau pole 
when denominator vanishes.  QED becomes strongly-
coupled at high energies.



The QCD beta function

Gluon self-couplings reverse the sign of the beta function

Asymptotic freedom; coupling constant decreases at high energies
and the perturbative expansion improves
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Confinement in QCD

QCD becomes strongly coupled at low energies.  We think this 
leads to the experimentally observed confinement of quarks 
and gluons into hadrons.

Juge, Kuti, Morningstar; review by Kronfeld, 1203.1204

quark-antiquark 
potential grows linearly 
at large separation, 
suggesting confinement

1/r2 at small separation



Picture of  a hadronic collision

Hard collision 
(Higgs 
production)  at 
short distances/
high energies

Parton-shower 
evolution to 
low energies

Hadronization 
at ΛQCD

Hadron decays

Multiple parton 
interactions

How does one make a prediction for such an event?



Divide and conquer

time scale: �proton �
1
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Make sense of this with factorization: separate hard and soft scales

Non-perturbative but universal; 
measure in DIS, fixed-target, 
apply to Tevatron, LHC

Process dependent but 
calculable in pQCD

Small for sufficiently 
inclusive observables

Review of factorization 
theorems: 
Collins, Soper, Sterman 
hep-ph/0409313



Recipe for a QCD prediction

Calculate σij→X

Evolve initial, final states to ΛQCD using parton shower
Connect initial state to PDFs, final state to hadronization



Recipe for a QCD prediction

Calculate σij→X

Evolve initial, final states to ΛQCD using parton shower
Connect initial state to PDFs, final state to hadronization

How precisely must 
we know σ?

Do we know how to 
combine σ, parton shower?

Do we have hard jets?  
Parton showers assume soft/

collinear radiation

Do we know the PDFs in the 
relevant kinematic regions?

Are our observables inclusive  or 
must we worry about large logarithms?



Example 1: e+e- to hadrons at NLO



The basics: the R ratio in e+e-

Many QCD issues relevant to hadronic collisions appear here.

Time scale for f+f- production: τ∼1/Q
Time scale for hadronization: τ∼1/Λ

R� 3
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R =
⇥ (e+e� � hadrons)
⇥ (e+e� � µ+µ�)



The basics: the R ratio in e+e-
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The basics: the R ratio in e+e-

•Note that even though we 
measure hadrons, summing 
over the accessible quarks 
gives the correct result (away 
from the resonance regions): 
parton-hadron duality
•Note also that there are 
pQCD corrections that are 
needed to accurately predict 
this ratio
•Our goal will be to calculate 
the next-to-leading order 
(NLO) QCD corrections to R



Leading order result

Work through this; since production part of e+e-→hadrons, μ+μ- 
identical, can just consider γ*→hadrons, μ+μ- and form ratio

Leading-order matrix elements:

|M̄0|2 =
1
3
|M0|2 =

4e2Q2
F Nc s

3

CM energy2

Polarization averaging 
for off-shell photon



Leading order result

Work through this; since production part of e+e-→hadrons, μ+μ- 
identical, can just consider γ*→hadrons, μ+μ- and form ratio

Leading-order phase space:
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p
s

1

(2⇡)2

Z
ddp1d

dp2�(p
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2
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Matrix elements don’t depend on momentum 
directions, so we can simply parameterize:

Go to 4 dimensions at the end

p1 = (E, 0, 0, E)

Use delta functions to do integrals; get:

Solid angle is 4π
PS0 =

⌦(3)

64⇡2
p
s



Leading order result

Work through this; since production part of e+e-→hadrons, μ+μ- 
identical, can just consider γ*→hadrons, μ+μ- and form ratio
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Real emission corrections

What can happen in field theory?  Can emit additional gluon.

Work out the phase space:
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shorthand for cosine

Introducing x1=2E1/√s, x2=2E2/√s, 
straightforward to derive the d=4 expression:
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Real-emission phase space

Gluon carries no energy

Anti-quark carries 
no energy

Quark carries no energy



Real-emission matrix elements

|M̄1|2 = 2CF g2
s
|M̄0|2

s
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Soft and collinear singularities

s1g = 2E1Eg (1� cos �1g)
s2g = 2E2Eg (1� cos �2g)

collinear singularities for pg || p1, pg || p2

soft singularities when Eg=(1-x1-x2)√s→0

pg || p2 when x1=1

pg || p1 when x2=1



KLN theorem

The cross section for a quark-antiquark pair together with a 
soft/collinear gluon isn’t well-defined in QCD.  Experimentally, 
indistinguishable from just two quarks (in fact, we should be
talking about hadrons or jets, not partons; will do later).
Good question: what is the pT of the hardest jet
Bad question: how many gluons are in the final state
KLN theorem: singularities cancel if degenerate energy states
summed over ⇒ as gluon becomes soft or collinear, 
indistinguishable from virtual corrections, must add loops.
First need to regularize the real corrections.



Dimensional regularization

Several ways to regulate soft/collinear divergences: add a gluon
mass, take the quarks off-shell
Method of choice is dimensional regularization: work in 
d=4-2ε dimensions.  Regulate both UV and IR singularities, 
introduces no new scales in calculations, maintains gauge 
symmetry. 
Coupling constant becomes dimensionful: gs2→gs2μ2ε

Useful to know the solid angle in d-dimensions:
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Real emissions corrections, take II

Recompute the phase space and matrix elements for the real 
radiation corrections

For ε slightly negative, regulates 1/(1-x1,2)
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Final result for real emission

Evaluate integrals (in terms of beta functions) to find:

Regulator dependent!  Not a physical observable.
Add on the virtual corrections next

double pole: soft+collinear gluon single pole: soft or collinear gluon
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Virtual corrections and final result
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As required by the KLN theorem, poles cancel upon addition 
of real and virtual corrections, leaving:
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Virtual corrections and final result
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As required by the KLN theorem, poles cancel upon addition 
of real and virtual corrections, leaving:
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Renormalization scale (in)dependence

The result must be independent of the arbitrary renormalization
scale μ. We can derive the following RG equation:

Can use this to predict the explicit μ dependence at higher orders,
by expanding this equation as a perturbative expansion in αs
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“Theoretical error”

Variation of scale in some specified range is often used as an 
estimate of theoretical uncertainty ⇒ if it was calculated to higher
orders, this dependence would vanish

from Ellis, Stirling, Webber
QCD and Co!ider Physics

Conventional range: √s/2≤μ≤2√s
Often underestimates LO→NLO, 
especially at hadron colliders where 
qualitatively new effects can appear
at higher orders
How to pick central value with 
multiple physical scales?



“Theoretical error”

Variation of scale in some specified range is often used as an 
estimate of theoretical uncertainty ⇒ if it was calculated to higher
orders, this dependence would vanish

Anastasiou, Dixon, Melnikov, FP 2003

LO is a qualitative description at 
best, and the scale variation is not 
trustable
If you want to match the data 

and have any idea about your 
error, you need higher orders!



Eikonal approximation

Useful to have diagnostic tools to check pieces of a calculation:
‘eikonal’ approximation for soft gluons gets double pole
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Proportional to the lower-order amplitude, with a color 
correlation.  Emission off the other leg also simplifies



Eikonal approximation

Phase space also factorizes, into the soft-gluon component times
the remainder.  Can derive simplified expressions for the cross 
section in this limit.

from Harris & Owens hep-ph/0102128, 
a useful reference for relevant formulae
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Eikonal approximation

Application to the current process yields:

The 1/ε2 poles must cancel against virtual corrections

agrees with our full calculation Cutoff dependence must 
cancel against other regions 
of gluon phase space
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Collinear approximation

Another singular region to consider: collinear gluon emission.  A
simple way of calculating this phase-space region also exists. 
Study the region p1 || pg.  Sudakov parameterization of momenta:

k⟘→0 is the singular limit.  p, n are light-like vectors satisfying 
p.k⟘=n.k⟘=0.  p bisects p1, pg.  The amplitude simplifues in this
limit:
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Collinear approximation

Phase space also simplifies in this limit.  We’re left with the 
following contribution to the NLO R ratio from the p1 || pg region:

Remaining cutoff dependence cancels against hard region of phase
space, which is finite and can be handled numerically in 4 
dimensions
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agrees with full result 

Cancels against soft region 
(with p2 || pg region)

x2=1-s1g/s



Slicing and subtraction

The splitting functions and eikonal factors are universal
What we’ve done forms the basis of a scheme for handling IR
singularities at NLO known as phase-space slicing
Split full=soft+∑(collinear)+hard; eikonal+collinear approximations 
to get singularities
Numerical integration of hard region; dependence on ln(δ), ln(δc) 
must cancel
Another scheme known as dipole subtraction, that unifies the 
soft and collinear limits into ‘dipoles’ for each pair of emittors

Useful references: 
Phase-space slicing, Harris, Owens hep-ph/0102128; 
Dipole subtraction, Catani, Seymour hep-ph/9605323;
Singular limits of matrix elements: Campbell, Glover hep-ph/9710255; 
Catani, Grazzini hep-ph/9908523



Parton Showers and Jets



Sudakov form factor

Let’s study again our real-emission cross section in the collinear 
limit, setting d=4.

Focus on collinear region 1||g. Think of 1/σ0×dσqqg as the 
probability of emitting gluon in interval dt.  Also consider 
probability of no emission.
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Sudakov form factor, probability of no 
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upper, lower invariant masses. 
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The parton shower

Can use to correctly (within collinear approximation) generate 
the emission of multiple partons (HERWIG, PYTHIA, SHERPA)

In our previous example, many partons will be produced as the 
variable t evolves from high scales to ΛQCD

�(t) = exp

�
�

⇤
dt

�

t�
�s

2⇥

⇤
dz Pqq(z)

⇥

This is the parton shower.  In addition to 
producing high-multiplicity final states, it 
resums large logarithms that appear in 
certain regions of phase space

More in John Campbell’s lectures



Jets

When low scales t~ΛQCD are reached, the hadrons will form 
observed experimentally.  Sprays of hadrons form the jets 
observed experimentally

Specify a jet 
algorithm for 
combining the 
observed particles 
into jets
The idea: the jets 
should reflect the 
primordial hard 
partons



Jets

When low scales t~ΛQCD are reached, the hadrons will form 
observed experimentally.  Sprays of hadrons form the jets 
observed experimentally

Specify a jet 
algorithm for 
combining the 
observed particles 
into jets
The idea: the jets 
should reflect the 
primordial hard 
partons

Useful reference: G. 
Salam, 0906.1833



The cone

Basic idea: draw a cone around the clusters of energy in the event

Start with seed particle i
Combine all particles within a cone of radius R

Use the combined 4-momentum as a new seed
Repeat until stability achieved

�R2
ij = (yi � yj)2 + (�i � �j)2 < R2

rapidities azimuthal angles

Iterated cones:

Progressive removal (IC-PR): start with largest transverse momentum as seed; 
after finding stable cone, call it a jet and remove; go to next largest pT

Example:



Infrared safety

We saw before that IR singularities cancel between real, virtual
corrections ⇒ in(ared safety.  The jet algorithm shouldn’t spoil this 
cancellation.  The example on the previous slide does.

✘ IC-PR algorithm starts from 
different seed after emission of a 
hard collinear parton

seeds



Consequences

Consequence: 1/ε → ln(pT/ΛQCD) ∼1/αS ⇒ no suppression of 
higher-order contributions, no expansion possible

Can modify algorithms so that addition of soft/collinear particles 
doesn’t modify hard jets in the event: SIScone (seedless infrared 
safe)

Situation for midpoint cone, from Salam & Soyez 0704.0292



Sequential recombination

kt algorithm:

Generalizations use a slightly different distance measure

Roughly, soft and collinear emissions come with small distance 
measure and are always recombined ⇒ IR safe

dij = min(p2
ti, p

2
tj)

�R2
ij

R2

diB = p2
ti

Work out all dij, diB, find minimum
If it is a dij, combine i and j and restart
If it is a diB, call i a jet and remove it
Stop after no particles remain

dij = min(p2p
ti , p2p

tj )
�R2

ij

R2

diB = p2p
ti

p=-1: anti-kt
p=0: Cambridge-Aachen



Jets in pictures

Areas denote where soft radiation would be “soaked up” by jet

First clusters all sorts 
of soft particles, 
which eventually 
become added to jet; 
more sensitive to 
underlying event, 
pile-up

Avoids this 
with the 1/pt2 
in dij; the 
preferred 
choice for 
LHC studies



Jet substructure

Recent interest in using substructure of jets to distinguish signal
from background.  For example, highly-boosted Higgs will 
produce a “fat jet” with two b subjets inside.

Boosted tops, W/Z bosons have been studied in various contexts

Undo last stage of clustering and look for 
significant mass drop, consistent with 
heavy particle decaying  to jets

Butterworth et al., 0802.2470



Example 2: Deep inelastic scattering and PDFs



Deep inelastic scattering

Putting one hadron in the initial state leads to DIS ⇒ still gives
most of our information on PDFs (ep at DESY)

qµ = kµ � k
�µ

Q2 = �q2

x =
Q2

2P · q

y =
P · q

P · k
lab=

E � E
�

E

Kinematics:



Hadronic tensor

Hermiticity, parity, current conservation allow us to simplify Wμν

Factorization tells us that EM probe scatters off partons

Wµ⇥ =
1
4�

⇤
d4z eiq·z⇤P |J†

⇥(z)Jµ(0)|P ⌅

=
�

gµ⇥ � qµq⇥

q2

⇥
F1(x, Q2) +

⌅
Pµ +

qµ

2x

⇧ ⌅
P⇥ +

q⇥

2x

⇧ F2(x, Q2)
P · q

EM current

Structure functions

d⇤

dx dQ2
=

4⇥�2

Q4

⇤�
1 + (1� y)2

⇥
F1 +

1� y

x
[F2 � 2x F1]

⌅

PDFs

Wµ⇥ =
1
4⇥

⇥
d4z eiq·z

⇥ 1

0

d�

�

�

a

fa(�)�p|J†
⇥(z)Jµ(0)|p⇥p=⇤P



Calculating the structure function

We will calculate the structure function F2.  Note that we can
obtain it by applying the following projection operator to W:

Calculate by inserting a complete set of states between currents;
at LO, have a single-quark final state:

F2 = Rµ⇥Wµ⇥

Rµ⇥ =
2x

d� 2

�
gµ⇥ � 4 (d� 1)

x2

Q2
PµP ⇥

⇥

Pµ =
Q

2x

�
1,�0, 1

⇥

pµ =
�Q

2x

�
1,�0, 1

⇥

qµ =
�
0,�0,�Q

⇥

Parameterize momenta as:



Calculating the structure function

We will calculate the structure function F2.  Note that we can
obtain it by applying the following projection operator to W:

Calculate by inserting a complete set of states between currents;
at LO, have a single-quark final state:

F2 = Rµ⇥Wµ⇥

Rµ⇥ =
2x

d� 2

�
gµ⇥ � 4 (d� 1)

x2

Q2
PµP ⇥

⇥

Derive the following phase space expression:

PS =
⇤

ddpf

(2⇤)d�1
�(p2

f )(2⇤)d�(d)(q + p� pf )

=
2⇤

Q2
�

�
1� x

⇥

⇥



Calculating the structure function

We will calculate the structure function F2.  Note that we can
obtain it by applying the following projection operator to W:

Calculate by inserting a complete set of states between currents;
at LO, have a single-quark final state:

F2 = Rµ⇥Wµ⇥

Rµ⇥ =
2x

d� 2

�
gµ⇥ � 4 (d� 1)

x2

Q2
PµP ⇥

⇥

Obtain the structure function:

=
�

q

e2Q2
q

⇥
d⇥ fq(⇥) ⇥ �(x� ⇥)

=
�

q

e2Q2
q x fq(x)

F2 =
1
4⇥

⇥
d�

�

�

q

fq(�)�
PS

2N
�Rµ⇥�



Scaling

No Q2 dependence in F2 ⇒ scaling, comes from scattering 
off point-like constituents of proton

Clearly a good approximation, but 
also clearly violated
Goal: check to see that QCD 
reproduces the scaling violation
Possible NLO real-emission terms:

⇒ we’ll do the quark 
pieces and quote the 
answer for these



Real-emission phase space

Focus on new aspects with respect to e+e- → hadrons; first, 
derive a useful parameterization of the phase space

Parameterize pg as: pg = (E,pT,0,k); use delta functions to remove these integrations.
Set spg=-Q2ξy/x to derive:

PS =
1

(2⇡)d�2

Z
ddpfd

dpg�(p
2
g)�(p

2
f )�

(d)(q + p� pf � pg)

=
1

(2⇡)d�2

Z
dspg

Z
ddpfd

dpg�(p
2
g)�(p

2
f )�(spg + 2p · pg)�(d)(q + p� pf � pg)

PS =
⌦(d� 2)

4(2⇡)d�2

Z 1

0


Q

2
y(1� y)

⇠

x

✓
1� x

⇠

◆��✏

p · pg =
⇠

2x
Q

2
y

pf · pg =
⇠

2x
Q

2

✓
1� x

⇠

◆



Real-emission matrix elements

Spin, color summed/averaged+projected matrix elements; focus
on the potentially divergent terms

Need to integrate over y, include

|M̄|2 = 4CF e2Q2
q g2

sµ2�

�
⇧

⇤
pf · pg

p · pg
+

p · pg

pf · pg
+

Q2p · pf

pf · pg p · pg
+ ... �⌥⌦

finite terms

⇥
⌃

⌅

1
4⇥

�
d�

�
fq(�)

F (1),real
2,q = e2Q2

q x
�s

2⇧

1
�(1� ⇥)

⇤
Q2

4⇧µ2

⌅�� �
x

⌅

⇥� �
1� x

⌅

⇥��

⇥
⌥ 1

x

d⌅

⌅
fq(⌅)

⇧
�CF

⇥

1 + (x/⌅)2

1� x/⌅
� 2CF

x/⌅

1� x/⌅
+ ...

⌃

This term is bad news, no way it 
can cancel against virtual 
correction, which are δ(x-ξ)

Looks like Pqq ⇒ 
collinear singularity

Notice the 
singularity when x= 
ξ ⇒ soft singularity



Factorization of  IR singularities

We are not satisfying the KLN theorem, which tells us to sum
over degenerate final and initial states.  The quark from the 
proton can emit a collinear gluon.  This changes the momentum of 
the quark that enters the partonic scattering process, but is 
indistinguishable.  The virtuality associated with this splitting
is very small, and this is a long-distance effect sensitive to 
low-energy QCD.
Solution: must absorb initial-state collinear singularity into
PDF.  Redo calculation with fq → fq,0, a bare PDF.  Choose 
the bare PDF to remove 1/ε pole. 
Must also add virtual corrections, deal with the x=ξ soft singularity
of real emission. 



Factorization of  IR singularities

We will perform this ‘mass factorization; step-by-step.  First 
define a plus distribution:
� 1

0
dx f(x) [g(x)]+ =

� 1

0
dx g(x) [f(x)� f(0)] ⇒ if g ∼1/x, removes singularity at x=0

quark-number conservation

After adding virtual corrections and rearranging, our 
result for the divergent part of F2 is:

F2,q =e

2
Q

2
q

x

Z 1

x

d⇠

⇠

f

q,0(⇠)

(
�(1� x/⇠) +

↵

s

2⇡�(1� ✏)


Q

2

4⇡µ2

��✏


�1

✏

P

qq

(x/⇠) + finite

�)

P

qq

(x) =C

F


1 + x

2

[1� x]+
+

3

2
�(1� x)

�✓
)

Z 1

0
P

qq

(x) = 0

◆



Factorization of  IR singularities

We will perform this ‘mass factorization’; step-by-step.  First 
define a plus distribution:
� 1

0
dx f(x) [g(x)]+ =

� 1

0
dx g(x) [f(x)� f(0)] ⇒ if g ∼1/x, removes singularity at x=0

Redefine the PDF according to:

f

q

(x, µ2) = f

q,0(x) +
↵

s

2⇡

Z 1

x

d⇠

⇠

f

q,0(⇠)

⇢
�1

✏

P

qq

(x/⇠) + C(x/⇠)

�
MS: C chosen to 
remove ln(4π)-γE

_

Arrive at the structure function:

F2,q = e

2
Q

2
q

x

Z 1

x

d⇠

⇠

f

q

(⇠, µ2)

⇢
�(1� x/⇠) +

↵

s

2⇡


P

qq

(x/⇠) ln
Q

2

µ

2
+ finite

��



Scale variation and DGLAP

Pole turns into a ln(μ2) dependence ⇒ F2 must be independent 
of this arbitrary factorization scale, which leads to an evolution
equation for the PDF.  Renormalization⇒Evolution.

Inclusion of the gluon-initiated partonic processes:

d fq(x, µ2)
d lnµ2

=
�s

2⌅

� 1

x

d⇤

⇤
fq(⇤, µ2)Pqq(x/⇤) ⇒ DGLAP equation

Leads to a ln(Q2) dependence of F2 ⇒ explains the observed scaling violation

d

d lnµ2

�
fq(x, µ2)
fg(x, µ2)

⇥
=

�s

2⌅

⇤ 1

x

d⇤

⇤

�
Pqq(x/⇤) Pqg(x/⇤)
Pgq(x/⇤) Pgg(x/⇤)

⇥ �
fq(x, µ2)
fg(x, µ2)

⇥

F2,q = e2Q2
q x

⇧ 1

x

d⌅

⌅
fq(⌅, µ2)

⇤
⇥(1� x/⌅) +

�s

2⇧

�
Pqq(x/⌅) ln

Q2

µ2
+ finite

⇥⌅

+ e2Q2
q x

⇧ 1

x

d⌅

⌅
fg(⌅, µ2)

⇤
�s

2⇧

�
Pqg(x/⌅) ln

Q2

µ2
+ finite

⇥⌅



PDFs

Get much of our knowledge of PDFs from the DIS process
PDFS enter every hadron collider prediction, so we’d better know 
them well.  Non-perturbative objects with perturbative evolution.
f(x,Q2): DGLAP governs Q2 dependence, so we need to extract
the x dependence from data.
On the market today: CTEQ, MSTW, NNPDF (global fits)
ABM, HERAPDF, JR (non-global)
Basic idea:

hadronic cross section = PDFs ⊗ partonic cross section

measure calculateextract



Determining PDFs

In more detail (from the Handbook of Perturbative QCD):



•Global fits typically use HERA 
charged and neutral current 
data; fixed-target Drell-Yan and 
DIS; jet production from the 
Tevatron/LHC; W/Z data from 
the Tevatron/LHC
•Non-global fits typically 
remove one or more of these for 
various reasons; for example, 
ABM neglects jet production, 
since it’s not known at NNLO 
in pQCD

from MSTW:

fixed-target DY and DIS

HERA

Tevatron



•Global fits typically use HERA 
charged and neutral current 
data; fixed-target Drell-Yan and 
DIS; jet production from the 
Tevatron/LHC; W/Z data from 
the Tevatron/LHC
•Non-global fits typically 
remove one or more of these for 
various reasons; for example, 
ABM neglects jet production, 
since it’s not known at NNLO 
in pQCD

from MSTW:

Need this large 
multiplicity to get all 
partons across the 
needed range of x



LHC data making an important appearance!



•MS scheme most commonly chosen these days
•Another issue that should appear here: to what order in pQCD 
are the partonic cross sections calculated?  
•All the ones referenced previously (CTEQ, MSTW, NNPDF; 
ABM, HERAPDF, JR) provide both NLO and NNLO fits 
•Note that the NNLO fits of CTEQ, MSTW, NNPDF use NLO 
QCD predictions for jet production

_



•Traditional choice of CTEQ and MSTW: f(x,μ0) = A0xA1(1-x)A2P(x)

from CTEQ:

•NNPDF uses instead a neural network parameterization to 
remove bias: f(x,μ0) = c(x)×NN(x)



LHC PDFs

Lots of gluons!
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PDF errors

Published sets come with errors... what do they mean?

CTEQ

For technical details on how to propagate these errors through to 
obtain the error on a cross section, see 1101.0536



PDF errors

Published sets come with errors... what do they mean?

Only error included!

Review by J. Owens at CTEQ 2007 summer school,
http://www.phys.psu.edu/~cteq/schools/summer07/

http://www.phys.psu.edu/~cteq/schools/summer07/
http://www.phys.psu.edu/~cteq/schools/summer07/


PDF error examples

CTEQ, P. Nadolsky 
et al. ‘08

before mass effects

after mass effects

Inclusion of mc, mb suppresses F2 at low Q2 ⇒ increase u,d to compensate
6-7% increase in LHC W, Z predictions; well outside the quoted error
Note that the estimated uncertainty from higher-order QCD is 1%

Some examples meant to recommend caution when 
interpreting quoted errors



PDF error examples
Some examples meant to recommend caution when 

interpreting quoted errors

MSTW 2008 PDF release arXiv:0901.0002

Run II inclusive jet data
Quark-mass effects
Gluon density decreased at x∼0.1

MH=170 GeV Higgs at Tevatron (pb):

∼15% decrease in predicted cross section !
Previous 90% CL error: ±5%

Anastasiou, Boughezal, FP 0811.3458



Importance of  global fits

from D. deFlorian

Error estimates from non-global fits must be carefully scrutinzed



Importance of  global fits

Error estimates from non-global fits must be carefully scrutinzed



PDF summary

Multiple methodologies to cross-check and LHC data gradually
increasing robustness of PDF central values and errors
Global fits in agreement to ~10% over entire kinematic range
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Example 3: Higgs production at NLO



‘Higgs’ discovery

You might have heard about the potential discovery of the Higgs
recently:

See lectures by Sally Dawson and Tom 
LeCompte for more on the Higgs boson



What we know so far

Gross properties of the new state roughly indicate SM-like couplings

Biggest signals in γγ and ZZ, which proceed primarily via gg→h



Trouble at NLO

We showed this plot before indicating that the corrections are 
large.  Our goal now is to compute the NLO cross section for 
this process and understand why.

Dawson; Djouadi, Graudenz, Spira, Zerwas 1991, 1995



Trouble at NLO

We showed this plot before indicating that the corrections are 
large.  Our goal now is to compute the NLO cross section for 
this process and understand why.

Without a detailed 
understanding of QCD, 
we would have a factor of 
3 excess in the γγ 
channel... and even more 
theoretical frenzy about 
beyond the SM physics



Gluon fusion at LO

Can calculate the LO cross section ⇒ already 1-loop! 

⌅LO
gg�h =

GF �2
s

288⇤
⇤

2

������
3
4

⇥

Q

F1/2(⇧Q)

������

2

⇥(1� z), ⇧Q =
M2

H

4m2
Q

. z =
M2

H

ŝ

� ⇥ 0 ⇤ F1/2 ⇥
4
3

� ⇥⌅ ⇤ F1/2 ⇥ �
2m2

Q

M2
H

ln
M2

H

m2
Q

•Independent of mf  when mf→∞ ⇒ true for any 
heavy fermion that gets its mass entirely from Higgs



Low-energy theorems
Useful, illuminating alternative approach for 2mt>MH

Diagrammatically, clear that Higgs interaction comes from 
derivatives of the top part of the gluon self-energy:

Generates both diagrams in the MH→0 limit

M(hgg) =⇤⇥�⌅
pH�0

mt

v

�

�mt
M(gg)

i

⇤k �mt
⇥ i

⇤k �mt

�imt

v

i

⇤k �mt
= i

mt

v

�
1

⇤k �mt

⇥2

=
mt

v

�

�mt

i

⇤k �mt



Effective field theory
We’re going to use an effective field theory to calculate the 
Higgs production cross section
EFT: if we are doing experiments at low energies, we shouldn’t 
care about the dynamics of very heavy particles.  We should be 
able to approximate their effects  as local, higher-dimension 
(suppressed by the heavy-particle masses) operators in an effective 
Lagrangian.
Well-established in QCD: heavy-quark EFT, soft-collinear EFT
We will use the separation 2mt >> MH to form a Higgs EFT

Useful references on EFT: 
Manohar and Wise, Heavy Quark Effective Theory
Rothstein, hep=ph/0308266 



The Higgs effective Lagrangian

Integrate out the top quark to produce an effective Lagrangian

Matching calculation: equate full and EFT propagators

L
full

= �1

4
Ga

µ⌫

Gµ⌫

a

+ L
top

Ga0

µ|{z}
EFT field

=
p
⇣
3|{z}

decoupling constant

Ga
µ|{z}

QCD field

LEFT = �⇣3
4
Ga0

µ⌫G
µ⌫0

a (remember to amputate 
external legs)

� igµ⇥

p2
�3 = � igµ⇥

p2
[1 + �t(0)]⇤ ⇥� ⌅

m2
t�p2

⇥ �3 = 1 + �t(0)

⇥ LEFT = � [1 + �t(0)]
4

Ga⇥
µ⇥Gµ⇥⇥

a

top-quark contribution to 
gluon self-energy



The Higgs effective Lagrangian
Now apply the low energy theorem to derive HGG operator:

Numerous nice features of this formulation...

Lhgg
EFT = �mt

4v

�
⇧

⇧mt
⇥t(0)

⇥
h Ga�

µ⇤Gµ⇤�
a

⇥ ⇥t(0) =
�s

6⌅

⇤
µ̄2

m2
t

⌅� �(1 + ⇥)
⇥

⇥ Lhgg
EFT =

�s

12⌅

h

v
Ga�

µ⇤Gµ⇤�
a



The Higgs effective Lagrangian
Systematically, simply extendable to higher orders in QCD

Reduces calculations by one loop order; 1-loop becomes tree, etc.;
makes a NNLO calculation possible
Turns a two-scale problem into two one-scale problems

Useful references: Kniehl, Spira hep-ph/
9505225; Steinhauser hep-ph/0201075

Two scales: 
MHiggs, mtop

Only mtopOnly MHiggs O(M2Higgs/4m2top)



The Higgs effective Lagrangian
Factorizes QCD effects (dynamics of gluons, light quarks from 
LEFT) from new physics (heavy particles into Wilson coefficients)
Applicable to the hγγ coupling also
Can be used when a particle does not obtain all its mass from the 
Higgs (for a recent formulation, see Carena et al. 1206.1082)

Valid much beyond the expected region of validity; forms the basis 
for much of Tevatron/LHC phenomenology
Let’s try it out, and do a full NLO calculation of a hadron collider
cross section



Setup
Our Feynman rules are 5-flavor QCD plus the EFT vertices:

= �i
�s

3⇤v

�
1 +

11
4

�s

⇤

⇥
⇥ab [p1 · p2g

µ⇥ � p⇥
1pµ

2 ]

= gs
↵s

3⇡v
fabc {gµ⌫(p1 � p2)⇢

+g⌫⇢(p2 � p3)µ + (p3 � p1)⌫}



Steps
Pick a regularization scheme (dimensional regularization for us)
Get the tree-level result
Calculate 1-loop diagrams as a Laurent series in ε
Perform the ultraviolet renormalization
Calculate the real emission diagrams, extract singularities that
appear in soft/collinear regions of phase space
Absorb initial-state collinear singularities into PDFs
Get numbers



Tree-level

�h1h2�h =
�

dx1 dx2fg(x1)fg(x2) �̂(z)

+ smaller partonic channels

(z =   MH2/x1x2s)

Calculate the spin-, color-averaged matrix element squared

|M̄|2 =
1

256(1� ✏)2| {z }
8 colors, 2(1�✏) spins

⇥|M|2 =
ŝ2

576v2(1� ✏)

⇣↵s

⇡

⌘
2

Get the phase space and flux factor

1

2ŝ

Z
ddph
(2⇡)d

2⇡�(p2H �M2
H) (2⇡)d�(d)(p1 + p2 � pH) =

⇡

ŝ2
�(1� z)



Tree-level

�h1h2�h =
�

dx1 dx2fg(x1)fg(x2) �̂(z)

+ smaller partonic channels

(z =   MH2/x1x2s)

Combine to get the LO result:

�̂0(z) = �0�(1� z) =
⇡

576v2

⇣↵s

⇡

⌘2
�(1� z)

We will later need the full d-dimensional tree-level result:

�(d)
0 =

�0

1� ✏



Virtual corrections

Leading soft+collinear singularity; emitting 
gluons from gluons gives color factor CA=3

External leg corrections scaleless:
Z

ddk (k2)n = 0

Calculate 2×Re[(M0)*M1], which appears in the cross section

= �(d)
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⇡
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UV renormalization

LO dependence on αS gives the UV counterterm:
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The remaining singularities are of soft/collinear origin; summing
what we have so far yields

The pole structure can be checked to be correct: Catani, hep-ph/9802439
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Real radiation corrections
Get the corrections coming from emission of an additional gluon

⇤⇥�⌅
singular
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2

•This can vanish when either pg→0 (soft),
or pg || p1, pg || p2 (collinear)
•Need a parameterization of phase space 
to extract these singularities appropriately



Real radiation corrections
1
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When we combine matrix elements and phase space, get 
terms of the following form:
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singular regulator

λ→0,1: collinear
z→1: soft



Real radiation corrections
The integrals over λ can be done in terms of Gamma functions, while 

the soft singularities as z→1 can be extracted using plus distributions:
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Arrive at the following contribution to the cross section:
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Remaining terms
Absorb remaining initial-state collinear singularities into PDFs, which 

amounts to adding the following counterterm:
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This cancels all remaining poles, but we need to add on the NLO 
correction to the Wilson coefficient in the EFT:
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Final result
Arrive at the final NLO result for the inclusive cross section:

(M2/s≤z≤1)
(integration over 
PDFs⇒integration 
over z)

First source of large correction: 11/2+π2 ⇒ 50% increase
Second source: shape of PDFs enhances threshold logarithm
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⇤ 1
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dz
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z
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L(y) =
⇤ 1

y
dx

y

x
f1(x)f2(y/x) (partonic luminosity)

Assume fi∼(1-x)b; plot L for various b
Look for peak near z≈1

⇒Sharp fall-off of gluon PDF 
enhances correction

b~2 (valence)

b~10 (gluon)
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NNLO in the EFT
Use of the EFT allows the NNLO cross section to be obtained

Harlander, Kilgore ‘02; Anastasiou, Melnikov ‘02; 
Ravindran, Smith van Neerven ‘03

Again, scale variation, 
especially at LO, can badly 
underestimate error!



Unreasonably effective EFT
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NLO in the EFT:

eikonal emission of soft gluons

Identical factors in full theory with σ0 →  σLO, full theory

error of 10% on 100% correction

MH=2mt

NNLO study of 1/mt suppressed 
operators, matched to large s-hat 
limit, large indicates this persists 
Harlander, Mantler, Marzani, Ozeren; Pak, 
Rogal, Steinhauser 2009
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analytic continuation to 
time-like form factor



Summary of  gluon fusion
Serves as a very accurate framework for all LHC phenomenology
Current uncertainty estimates: roughly 10% from uncalculated 
higher orders, 10% from PDFs, a few percent from other effects
(use of EFT, bottom-quark effects, EW effects)

Useful references: S. Dawson, NPB359 (1991) 283-300 and QCD and Co!ider Physics 
by Ellis, Stirling, Webber (detailed NLO calculation);
1101.0593 (detailed discussion of uncertainties)

Available codes: http://theory.fi.infn.it/grazzini/hcalculators.html
http://www.phys.ethz.ch/~pheno/ihixs/index.html
http://particle.uni-wuppertal.de/harlander/software/ggh@nnlo/
HIGLU: http://people.web.psi.ch/spira/higlu/

http://theory.fi.infn.it/grazzini/hcalculators.html
http://theory.fi.infn.it/grazzini/hcalculators.html
http://theory.fi.infn.it/grazzini/hcalculators.html
http://theory.fi.infn.it/grazzini/hcalculators.html
http://particle.uni-wuppertal.de/harlander/software/ggh@nnlo/
http://particle.uni-wuppertal.de/harlander/software/ggh@nnlo/
http://people.web.psi.ch/spira/higlu/
http://people.web.psi.ch/spira/higlu/


Current topic: jet vetoes in QCD



Confronting reality
Unfortunately, the overwhelming backgrounds at the LHC require
that significant cuts are imposed on the final state.  
For gluon fusion, two NNLO parton-level simulation codes exist 

FEHiP: Anastasiou, Melnikov, FP 2005

HNNLO: Catani, Grazzini 2007-2008



The jet veto
A typical cut is to divide the final state into bins of differing
jet multiplicity

Required in the WW channel 
to reduce top-quark background

25-30 GeV jet cut used

When we try to compute at fixed order:
Does the uncertainty really become 

smaller with a stricter veto?
Anastasiou, Dissertori, Stoeckli 2007



The jet veto
Significant interest in trying to understand the impact of jet vetos
on Higgs searches Stewart, Tackmann 1107.2117; Banfi, Salam, Zanderighi 1203.5773

We also saw this in VH, although we’ll focus on gluon-fusion here
Why are jet vetos dangerous?

Virtual corrections: -1/εIR2

︷

Real corrections: 1/εIR2-ln2(Q/pT,cut)

︷

•Relevant log term for Higgs searches: 6(αS/π)ln2(MH/pT,veto)~1/2 
⇒should be resummed to all orders, fixed-order breaks down
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Why are jet vetos dangerous?

Arises from an 
accidental cancellation 
between these logs and 
the large corrections to 
the inclusive cross 
section... no reason to 
persist at higher orders
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Resumming jet-veto logs
Option 1: directly resum the logs in the presence of a jet 
algorithm.  This is complicated, and is the subject of ‘healthy
debate’ in the literature Banfi, Monni, Salam, Zanderighi, 1206.4998; Tackmann, Walsh, Zuberi
1206.4312; Becher, Neubert 1205.3806

Option 2: build intuition from simpler but closely related variables
Typical choice is pT of the Higgs; equivalent to a jet veto through
O(αS).  Other choices possible Berger et al. 1012.4480

Toy example of ln(pT) resummation: e+e-→γ*, multiple soft-photon 
effects

+. . .

p1

p2

k 1 k 1

k 2

p1

p2

+



Soft emissions in b-space
Both matrix elements and phase space simplify in this limit

Would be independent emissions if not for phase-space constraint
Fourier transform:

Eikonal approximation for 
n-photon matrix-elements:
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Exponentiation
Product of matrix elements and phase space now exponentiates

Large b ⇔ small pT; inverse transform keeping leading terms
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PT resummation for Higgs
Known to the next-to-next-to-leading logarithmic level

HqT: de Florian, Ferrera, Grazzini, Tommasini 2011

Classic ref for low pT 
resummation: Collins, Soper, 

Sterman NPB250 (1985) 
b-space: Parisi, Petronzio 

NPB154 (1979)

Used to reweight 
Monte-Carlo simulation 
programs such as 
POWHEG, MC@NLO 
to properly model Higgs 
kinematics and describe 
the jet veto



Conclusions

I hope you learned about the QCD techniques available 
to avoid confusing the two lines shown on the left
Serious quantitative predictions at LHC require NLO;  
this is a very active area!
Many things can happen at higher orders in QCD, and 
must be carefully considered in studies: do the cuts 
enhance corrections? are there large logarithms? are the 
PDFs well determined?
Effective field theory methods can simplify calculations 
with multiple scales
Enjoy Chicago this weekend!


