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We study the way the nucleon-nucleon interaction is modified inside of a nuclear
medium, paying special attention to the spin-isospin channel. Several physical processes
which are particularly sensitive to this part of the interaction are reviewed and the im-
portance of the medium corrections to describe their dynamics is analyzed.
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1 Introduction

These lectures pretend to be an exercise on many body quantum field theory by
applying basic principles to a variety of physical processes which seem originally
rather disconnected, but which, as we will see, share a common factor: the essential
role played by the medium renormalization of the vacuum interactions in the correct
understanding of their respective dynamics.

In order to follow the lectures, some knowledge of many body theory has been
assumed, although some of the concepts are introduced here. Excellent reviews on
the topic can be found in Refs. 1-4.

The lectures begin with an analogy, by looking at the way the well known
Coulomb interaction is screened in an electron gas. This analogy allows us to in-
troduce concepts like the medium polarization, which will help us to study the way
the NN interaction is modified inside of a nuclear medium, leading to the concept
of induced interaction, which will play a central role in the rest of the lectures.

We will carefully study the spin-isospin channel of the interaction and search for
physical processes which are particularly sensitive to this part of the interaction.
In the process we review the theoretical situation of muon capture in nuclei, the
problem of the ¥ and A decay in nuclei and finish with a unified study of pionic
atoms and low energy pion-nucleus scattering.

Let us begin with a qualitative discussion, extracted from the excellent book of
Fetter and Walecka [1], of the properties of the instantaneous Coulomb interaction
in an electron gas. The problem has an obvious resemblance with the modification
of the strong interaction in a nuclear medium in which we will be interested in
the next sections. One electron inside of an electron gas polarizes the medium
(Fig. 1) in such a way that, in a region around it, the negative charges are slightly
displaced away from the electron, leaving behind the background charge of the
positive ions [1].

Fig. 1. Polarization of an electron gas due to the presence of an external charge.

As a consequence of this polarization, the photon acquires an effective mass,
which leads to the screening of the Coulomb interaction [1]. The original Coulomb
interaction is changed to one of shorter range,

; (1)
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Quantum field theoretical methods in many body systems

where p is the electron density of the gas and p a certain function of it. Note
that the effect of the polarization has been to convert the infinite range interaction
into one of finite range. The positive charge around one electron, coming from
the polarization of the medium, cancels the electron negative charge, and at large
distances we see an effective charge zero.

Equation 1 in momentum space is now

1
7% 7+ pP(p)’

which corresponds to the instantaneous (¢° = 0) Coulomb piece of the photon
propagator and its modification in the electron medium. The physical mechanism
for the polarization consists in a transfer of some electrons from occupied states of
a Fermi sea to some unoccupied states (Fig. 2), or more technically in producing
particle-hole (p-h) excitations. In many body language we express diagramatically
the modification of the interaction as shown in Fig. 3.

[a—

(2)

Fig. 2. The energy levels of the Fermi sea are occupied. The photon induces a transition
of one electron from one occupied state of the Fermi sea to some unoccupied state.

Fig. 3. Modification of the Coulomb interaction due to the polarization of the electron
Fermi sea.

The graphs in Fig. 3 are Feynman Many Body diagrams which allow to evaluate
the modification of the photon propagator. Hence we can consider the piece of the
photon propagator associated to the instantaneous Coulomb part of the interaction
(c¢Dg”) [5], which is now modified in the following way

cDE(q) = g"°¢"°Do(]),
. 1
DQ(q) - :1:75)
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iDo(¢) — 1Do(q) +1iDo(q)(—111(q))iDo(q)
+1Do(¢)(=111(q)) 1Do(q)(—11(9))1Do(§) + -~ =1D(g) . (3)

Thus we have

D(q) — DO(Q) M p— wl
1-1(9)Do(§)  Dg'(7) - (q)
1
) W
where I1(q°, ) is the component 00 of the photon self-energy due to a single p-h
excitation. It is a function of ¢°, § and the electron density.

The loop in Fig. 3 stands for a p-h excitation as depicted in Fig. 2. The photon
would also be renormalized through ete~ excitations. One can think of analogies
by recalling the picture of the Dirac sea. There, one assumes that all the states
of negative energy are filled by electrons. Then a particle-antiparticle excitation is
represented (see Fig. 4 left) by a transition of one electron from an occupied state of

negative energy to an unoccupied state of positive energy. If now in addition we have

-— o - - —

. —— a -

- E>0 _")W\

—_— F= () ———

E<?0

[T
[T

Fig. 4. Left: Representation of the Dirac sea and of ete™ excitations. Right: Representa-
tion of the p-h excitations (transitions in the positive energy region of the spectrum).

some states of positive energy occupied (states of the Fermi sea), then we can also
excite electrons from these occupied states to other unoccupied states of the Fermi
sea. These transitions are additional to those from the negative energy states to
the positive energy states. In this sense we can now think of the contribution of p-h
excitation to the photon self-energy as an additional contribution to the free photon
self-energy. This latter one will renormalize the electron mass and charge and the
vee coupling, parameters which determine the free electron-electron interaction.
Thus the many body corrections renormalize the physical free magnitudes of the
theory under study.
For the electromagnetic interaction, given by

Hem(z) = —e¥(z)y" ¥(z)Au(z), (5)
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the Coulomb part of the interaction (zeroth component) in the non-relativistic limit
has a trivial limit for the yee vertex, which is just the electron charge e. Thus the
self-energy IT(q°, ¢) can be evaluated and one finds

‘ - . : d*k | .

ST D) = (Hie(-ie(-D) [ GGGk +a),  (6)
where (—ie) is the coupling constant times the factor —i from the perturbative
expansion, the minus sign comes because of the fermionic loop, the factor 2 accounts
for the two possible spin states of the electron and finally Go(k) is the electron
propagator in a Fermi sea given by [1]

1—n(k n(k
Golh) = 2L, 1)
O —e(k)+in kO —e(k)—1in

- -

where n(k ) is the occupation number (n(k ) = 0 for k| > kg, n(k) = 1for |k| < kp)
and e(lg) is the kinetic energy of the electrons. The k° integration in Eq. 6 can be
performed in the complex plane and because of the nature of the poles only the
first term of Go(k) times the second one of Go(k + ¢), or the second one of Go(k)
times the first one of Go(k + ¢) contribute. Thus we get [1]

H(q0> ‘T) = ere(qO’ q-.) ) (8)
where Ue(q", 7), called the Lindhard function is given by
. 43k n(k)(1 —n(k +§
Ue(qO)Q) :2/(2 = - ( Z( - ( .‘Q)) '
T3 g —e(k + )+ e(k) +in
¢ +e(k+q)—e(k) +in

The two terms in Eq. 9 account for the direct and crossed terms of the p-h excitation

depicted in Fig. 5.
q
q
k“'q @Q
q
q

Fig. 5. Direct and crossed terms contributing to the Lindhard function or the photon
self-energy.

(7)

Note that U.(g) can have both real and imaginary parts, which can be calculated
by using

1 1 P
k) 1 = P{———————»}—mé(k’ (k)), (10)
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P {...} being the principal part, always understood under the integration symbol.
Thus, assuming ¢° > 0, then only the first term of Eq. 9 gives rise to an imaginary
part and we get

d3k

ImUe(q) = -2 (—Q—W—)—gﬂ'é [qo—e(E+ d’)+€(lg)] n(k) [1—n(E+gT) . (11)

The imaginary part of Ue(g) comes from situations in the intermediate states
integration, where the particles are placed on shell (momentum conservation in an
infinite homogeneous medium is built from the beginning and energy conservation
is imposed by the 6§ function). This is a consequence of a more general theorem,
contained in Cutkowski’s rules (Ref. 6), which expresses that if we draw a straight
line which cuts several lines corresponding to intermediate states in a Feynman
diagram, when these lines are placed on shell in the integrations one will get a
contribution to the imaginary part of this diagram in the scattering matrix, self-
energy, etc. ..

q")
U(q’.q)

s

Vi

Fig. 6. Analytical structure of the Lindhard function. The dashes represent the analytical
cuts. The function U(¢°, §) is continuous up to the real axis in the first and third quadrant.

e

Fig. 7. Direct and crossed diagrams corresponding to the y—e scattering process.

In the complex ¢° plane, U(q", ) has a continuous set of poles in the fourth
quadrant (¢° = €par — €hole — 17}, from the first term of Eq. 9) or in the second
quadrant (¢° = €nole — €par + 17, from the second term of Eq. 9). Hence, U(q?, q)
has an analytical cut in the second and fourth quadrants as depicted in Fig. 6. The
function U(q) has an imaginary part for real values of ¢° situated in the analytical
cuts. The integrals in Eq. 9 can be done analytically and analytical expressions for
both the real and imaginary parts will be given below.

It is interesting to note that if we open the hole line in Fig. 5 we find the two
diagrams that contribute to the photon electron scattering, as shown in Fig. 7.

Thus we can think of the self-energy (8) as an integral of the e scattering matrix
over the occupied states.
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2 Virtual meson propagation in nuclei®)

The introduction in the last section of the propagation of photons through an
electron medium simplifies now the discussion of the propagation of pions and
other mesons through a nuclear medium. The electric charge of the electron is now
substituted by the axial charge of the nucleon, which produces an axial polarization
of the medium ([8]). The pion and other mesons will play now the role of the photon
as the carriers of the interaction. :

2.1 Particle and particle-hole propagators in a Fermi sea: Occupation number
and the Lindhard function

Diagramatically the picture for the modification of the pion propagator is iden-
tical to that of Fig. 3, by substituting the photons by pions. The 7NN effective
Hamiltonian, in its non-relativistic form, is given by (¢ = my)

SHxnn(z) = £WT(:(:) 0 0id* (z) X ¥ (x) (12)

with (f?/4m = 0.08). ¥(z) is the nucleon field in the isospin space
wi(z) = (!Pg(x), !l'/;[(a:)) (13)

with ¥, .(z) the proton and neutron fields and ¢*(z) the pion field in cartesian
isospin basis [9]. In momentum space the 7NN vertex for an incoming pion of
momentum ¢ and isospin A is given by

—iVann = =F7 T (14)

® |~

The pion self-energy is now evaluated by summing over the spin and isospin of
the particles and we find

(% q) = ﬁngUN(qﬂ,q), (15)
omitting the trivial 65, dependence, where

Un(g) = 2Ue(q), (me — mn). (16)

Hence formally Un is equal to U, except that we must substitute the electron
mass by the nucleon mass. The extra factor two appears since now we also sum
over the isospin degrees of freedom of the nucleon. Hence the pion propagator is
now modified from its free value:

1 1

Dy(q) = - — — D(q) = - — .
) ¢ — 72— pt +in ¢°% — 72 — p2 — (4% q)

®) This section is based on Ref. 7.

(17)
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The expression in Eq. 15 for the pion self-energy is however only a first step.
Indeed the pion cannot only excite nucleons above the Fermi sea, as implicitly
assumed in Eq. 15, but it can also excite the internal degrees of freedom of the
nucleon since it is a composite particle made out of quarks. Hence a nucleon can
be converted into a A, N*, A*... Out of these, the A plays an important role
at intermediate energies because of its lower mass and strong coupling to the =N
system.

In an analogous way to Fig. 5 we will now have for the pion self-energy a graphical
expression shown in Fig. 8.

A b

q q

Fig. 8. Diagrams entering the calculation of the pion self-energy in a nuclear medium.

The 7NA effective Hamiltonian is now given by (f*2/4mr = 0.36)

*

Hena = {;—w;;(x) S; 0:¢* (2) T ¥a(z) + hoc., (18)

where S, T are the transition spin and isospin operators defined by means of the
Wigner-Eckart theorem as

(3M,] SL]ams) = (3,1, 3Ims, v, Mo) (3]15T] [3) (19)

with v the index of a rank one tensor in the spherical basis. The reduced matrix
element in Eq. 19 is taken to be the unity, which serves to define the operator®) S.
A completely analogous expression holds for T ;f .

6) A useful expression needed to evaluate the pion self-energy through A-h excitation is given

by the clousure property
3.7 3 1
> i) (300 5] = 5= 3o
M,

in cartesian basis.
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The pion self-energy for A-h excitation, corresponding to the last two diagrams
of Fig. 8, can be evaluated by using the same procedure used in the p-h excitation,
substituting the vertex Vann by Vana (for the 1N — A transition)

»

—iV,,NA(q) = %S"fqﬁT)‘, (20)

and the particle part of the propagator in the Lindhard function by a A propagator

1
Galk) = 21
ah) = T un = Ta 1 lila @)
with wg = Ma — Mn, Ta the A kinetic energy and ['a the A decay width
I 11 f**M

2 T34t S5

with gn the 7N c.m. momentum for the decay of a A of energy ¢° and /s the c.m.
energy of this system.

Note that there is no Fermi sea of A resonances and hence the A propagator
does not have the hole part.

With these ingredients, the pion self-energy now reads

0 - __ff_~2 0 -
H(q,Q)—qu Ug",q) (23)
with
U(q) = Un(q) + Ua(q) (24)
and

Ua(g) = —i (g) (ff—) / (SZ’; (GO(k)Galk +q) + C°(K)Galk— )] . (25)

Defining the dimensionless variables
0
v = gm ;n , qg= 1 (26)
kF

we have (m = My) [7]

~N 2 ~ -
1_(3-*2) lnu/?—€/2+1
q 2 v/i—q/2—1
1 v @\, v/itd/2+1
% {“(@*5) 0

v/§+4/2-1
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for complex values of q°. For real values of ¢°, Eq. 27 provides the real part of Uyn(q)
by taking the absolute value of the arguments of the In function. In this latter case

we also have

ImUn(v,§) = —2mke |y _ (I _ 4 2 (28)
MENLD = T i 2 |
f0r6i>23nd%424—42|V|Z%fiz—40ré<23nd%fiz+dz|V|Zfi*%dz,
) mk
ImUN(V,q) = -——;r?;:‘ V| (29)

forg<2and 0 < |v|<§— %cjz, and Im Un(v, §) = 0 otherwise.
On the other hand, U, is given by

. 4 f* ky S| b2—a? a+b
0 _ (*] _FFy L /
2—a'? o' +b
5 ma’—b : (30)
where
gl
b = My
IR T AV q?
T = (q wr(q") TR
1 . iz
A N 0y
¢ = o (~ - on-0) - 72
li)R(qo) = wR:MA—MN, qOeC',
I-v 0
@R(QO) = wR—i A(Q) qOGR‘ (31)

2 3
For real values of ¢° for which wg(q°) is real the arguments in the logarithms
must be substituted by their absolute values.

2.2 Induced spin-isospin nucleon-nucleon interaction in a nuclear medium

By analogy to Fig. 7, the model of Fig. 8 implies an assumption for the =N
scattering matrix which is given in Fig. 9.

The model of Fig. 9, which contains the nucleon and A poles and their crossed
terms, accounts for the p-wave of the 7N scattering matrix. The s-wave part gives
only a small correction for cases where the momentum is not too small. For the
case of pionic atoms, which we will study below, the s-wave must be however taken
into account.
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N . A N

N
3 J B
~ \ Ay
N N v
A \I \/
A ¢ AN <
4 I\ I\
. N [N
Gl 4 y A
.

A N 7{ N N

Fig. 9. Model for the 7N scattering amplitude implicit in the diagrams of Fig. 8.

The series of Eq. 3 implicitly assumes that a photon (a pion here) propagates
in between two particle-hole excitations. It is well known that one pion exchange
only accounts for the long range part of the NN interaction, and that at short
distances a repulsive force should also be included. The repulsive short range part
of the interaction will modify the pion exchange by cutting its contribution to the
interaction at short distances. In many problems which are selective to the pionic
part of the NN interaction one is only selecting the exchange of a T'= 1 object, for
which the p-meson will also play some role. On the other hand, in the propagation
of a pion, in those iterated diagrams where more than one p-h excitation occur, the
p exchange, modified by the effect of short range correlations, plays also some role.
For this reason it is customary to talk about the spin-isospin part of the interaction
(Refs. 7 and 10).

The p meson coupling to the nucleon V,nn is given, in the non-relativistic limit,
by

HpNN(q) = lip-(é" X (i‘)g’)’)‘, (32)
mp

where € 1s the p meson polarization vector. Similarly the pAN coupling for the
pN — A transition is given by

Honalg) = i-T%’-(S’T x ) &T (33)
14
with
f2/m?
Cp = 7%7‘/:‘5‘ ~ 2,
fx g
b .

The short range repulsion, assumed independent of spin-isospin, is attributed
to the exchange of the w-meson in the meson exchange language, although some
pictures based on the bag model generate the repulsion from the antisymmetry of
the quarks when the two bags overlap (Refs. 11 and 12).

With the couplings #NN and pNN of Eqs. 14 and 32 we can write the NN
potential due to one pion or one p-meson exchange

faan 1 f. )

-1V, = —0qrT (-
w(e) = 764 T a e iicH (-4
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f? 7 DD r 07 @)
V, = — 1q; 0, TAITE 35
= TR e (35)
where the short distance repulsion in coordinate space has still to be implemented

and ¢; = ¢;/|7].
Analogously when summing over the intermediate p polarization

2 ExnEcD .
m2 qoz——(fz—mf,—}-ie

Vo(q)

f; 'S (2) =
= 2 51i — ol a FLz2) 36
mg q02—q"2—mf)+ie( J ‘Iz‘ly) ( )

Vr(q) + V,(q) provides the spin-isospin part of the NN interaction in the meson
exchange model.

We can observe that V:(q) is of a longitudinal type, ¢;¢;, while V,(q) is of a
transverse type, (6;; — ¢ig;). These two operators are mutually orthogonal.

In addition we must include vertex form factors to account for the off shell
mesons. We include a monopole form factor per vertex of the type

0 o _ A =mi
Fi(q",q) = *X"“"“q‘;, (37)

with Ay = 1200 MeV and A, = 2500 MeV (Ref. 13).

With all these ingredients, we are now in position to evaluate the G-matrix.
We could think that the hard core is produced by a strong repulsive spin-isospin
independent force and we can use the results of Brown and Jackson (Ref. 14) to
construct the G-matrix. Thus, we find that if the potential is split into a “weak”
spin-isospin dependent part, V,,, and a “strong” spin-isospin independent part, Vj,

V= V+V,, (38)
the GG-matrix is given by
G:Gs“!‘QSTVwQs‘*"H, (39)

where (5 is the (G-matrix for the spin-isospin independent part of the interaction
constructed with V; alone and 2], {2, are wave operators which in the case of a
short-range repulsive potential can be approximated by a local correlation function
due to the short range repulsive part. Equation 39 then separates the G-matrix
into a spin-isospin independent part and one which is spin-isospin dependent. This
last piece will be found by multiplying the spin-isospin dependent potential by the
correlation function. This is the procedure followed in Refs. 3 and 7, where an easy
analytical correlation function in coordinate space (which vanishes as r — 0 and
goes to 1 as » — +o00) of the type g(r) = 1 — jo(q.) with q. ~ m, ~ TT0MeV is
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assumed. One can then find the corresponding modification of the potential in the
momentum space and thus the modified = + p interaction reads now

. i
Vs—i(‘]) = (aéij + b%) o'gl)aéz)%‘(l){-‘(z)

i i
= [v (b - 22 ) + UL ] o070 (40)
with V;(¢) and Vi(q) given by
‘ £ [ P 2 ' 5 2
Vi(g) = | D§(@)F5(0)Cp = 5-Do () F (9)

- 2 A s 2
- (q2+ §QE> Do"(9)F, (Q)Cp] .

o 2

i = L [emswro - (¢ +£) 0wk W

2q2
3

DS WF; @G| (41)

D?(q), D§(q) are the pion or p - meson propagators and Dy, F' the propagators
or form factors by substituting §2 by ¢% + ¢2. We call the interaction in Eq. 40 the
nucleon effective interaction.

The second form in Eq. 40 is quite useful because it separates the interaction
into a transverse piece, the V; term, and a longitudinal piece, the V] term.

Because we take C, = C5, A} , = Ay , the potential of Eq. 40 describes also the
interactions AN — NN, NN — AN, AN — AN and AA — NN in the vacuum and
inside of the nuclear medium respectively, by means of the following replacements:

X
for o sttty (42)
p p
The interaction in Eq. 40 acts now between the p-h or A-h excitations (the differ-
ent coupling constant for.the #NA is incorporated in the Lindhard function, Ua).
Hence ultimately the picture for the spin-isospin dependent part of the interaction,
by accounting also for the propagation of the mesons through the medium, will be,
by analogy to Fig. 3, the one shown in Fig. 10.
The series implicit in Fig. 10 can be easily summed up by using the orthogonality
between the longitudinal and transverse modes of the interaction.
Thus, one finds two (longitudinal and transverse) geometrical series, which do
not interfere

~ ~

[Vis(0) + Ve (U (@) Vis (@) + Vit (@U (@ Ve (@)U (@) Vs (9) + .| of VoD 07

Vi(q) ( q'in) Vi(q) QinJ (1) (2)=(1)=(2
- 5 — 14 2 oital @ (43
[1—0'( I\ ) T TTrew ) T T )

Czech. J. Phys. 46 (1996) 685



J. Nieves

Fig. 10. Picture for the induced spin-isospin interaction in a nuclear medium. The wavy
line stands now for the interaction of Eq. 40.

The interaction in Eq. 43 is called in the literature the induced interaction (Ref. 15).

Very often in the literature one uses other expressions for Vj, V;. The most widely
used, in terms of the Landau-Migdal parameter ¢’, can be obtained from Eq. 41 in
the limit || < ¢,

2
Vig) ~ %W&(@Fﬁ@ +47,

2
Vilq) ~ %{a‘msmwﬁ(q)@wq (44)
with
/ qg 3. 5 2 2 550 5 2 :
g = ———3—Do (Q)Fr (q) — gqcDo (@) F, (¢)C, . (45)

This expression gives ¢’ & 0.6. Accepted values of ¢’ would range from ¢’ ~ 0.6 to
0.8.

In the problems which we will study in the next sections V;(gq) > 0, Re U(q) < 0,
Vi(q) < 0. Thus one finds a decrease of the transverse mode (quenching) and an
increase (enhancement) of the longitudinal one (Ref. 7). The net effect of considering
the whole induced interaction instead of the bare one depends on the kinematical
conditions (range of ¢) and the weight given to the transverse and longitudinal
parts in Eq. 43.

3 Muon capture in nuclei’)

In this section we review the problem of total muon capture in nuclei from an
unconventional point of view. From the early days of Primakoff [17] the subject
has attracted much interest [18, 19], since this reaction has been used traditionally
to extract information on the value of the pseudoscalar coupling constant [18-20].
The usual approach consists in performing the non-relativistic approximation in the
transition operators, neglecting the nucleon-momentum, taking an average nuclear
excitation energy [17-19], and then doing a closure sum over the final nuclear states,

") This section is based on Ref. 16.
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in some cases improved by means of sum-rule approaches [20]. The final results are
then obtained after the evaluation of non-trivial two-body matrix elements in the
ground state of the nucleus.

Another approximation traditionally used, to take into account the fact that a
muon penetrating into the nucleus does not experience the full charge Z but only
the charge included within its orbit, is the use of the effective charge, Z.g, which
introduces a non-negligible source of error in the calculation since the capture rate
is proportional to Z2; and certain approximations are involved in its evaluation. In
addition there are strong nuclear renormalization effects which are very important
and deserve special attention. Thus the traditional method is subject to different
(and difficult to control) sources of theoretical uncertainties [16].

The approach of Ref. 16, which we will follow here, avoids all of these problems
and provides a highly accurate method to evaluate the total capture rate in nuclei.
The method consists in evaluating the capture rate of a muon in a Fermi sea of
neutrons and protons (we will see that the only relevant nuclear information needed
is the neutron and proton densities of the nuclear ground state, which will be taken
from experiment to minimize errors). The calculation can be done exactly in a
relativistic framework going beyond the closure sum or the sum rule approach.
With the neutrino energy as a variable of integration, the pion pole structure of
the pseudoscalar term is kept in the calculations making thus more reliable the
information extracted, from this process, about the pseudoscalar coupling.

The step from infinite matter to finite nuclei is done by means of the local density
approximation, which turns out to be highly accurate in this case, given the very
weak ¢ dependence of the matrix elements involved, which makes the transition of
very short range [16]. The infinite matter calculation provides the muon width as a
function of pp, n, the neutron and proton densities, then one assumes p, n — ppn(r)
and fold this functional with the muon density distribution in the 1ls state of the
muon atom, from which the capture takes place and avoiding in this way the use of
the concept of Z.g. In addition effects due to strong nuclear renormalization in the
operators and due to binding energies of the muons are also taken into account. We
will pay here a special attention to the effects due to the nuclear renormalization
(main objective of these lectures) in medium and heavy nuclei, and we will see how
this renormalization reduces the capture rates in about of a factor two from the
results without renormalization.

3.1 Muon capture rate in infinite matter

We start from the basic Lagrangian for the y~p — nw, reaction depicted in
Fig. 11:

L(z) = %J"(m)LL(z) (46)

with L,, J* the leptonic and hadronic currents respectively and Gg the Fermi
constant (Gr/(he)® = 1.166 x 107° GeV™?). The matrix elements of the leptonic

Czech. J. Phys. 46 (1996) 687



J. Nieves

Fig. 11. Diagram for 4~ p — nv, process.

and hadronic currents between spinors give

La(l‘) - ﬁu(l’u)')’a(l "'75)“;;(1)/1)»

amMm

[+3 = « : o a gp a
J¥(x) — Un(pn) (gv*r +12 o ﬁqg—f—gA*/ v5 + —q 75) up(pp), (47)
m my

p
where we follow the Itzykson and Zuber [6] convention for the v matrices, with
Pn,p,v,u the neutron, proton, neutrino, muon four vectors, q = pn—pp and gy, gm, g4,
gp the vector, magnetic, axial-vector and pseudoscalar couplings constants respec-
tively, including a form factor dependent on g2. The values of the coupling constants
and the expressions for the form factors can be seen in Ref. 16.

The width of a muon in the infinite Fermi sea of protons and neutrons with
N # Z, due to a single p-h excitation (Fig. 12) is given by®), in the Itzykson and
Zuber convention [6], as

_ d®p, My Mp Mp =< 27
r = Q/W—E:—E;—E:EZW ImU(p, — pu), (48)
where T denotes the T-matrix for the 4~ p — nv, process averaged over the Fermi
sea (the full expression for 5. 5 |T'|* can be found in Ref. 16) and U is the Lindhard
function (see Eq. 16) for the particle hole excitation of Fig. 12 in asymmetric nuclear
matter and is given by

5 [ d°p n1(p)[1 = na(p + Py — P -
U(p/‘__pu) — 2/ 3 ( )[ - ( -‘F‘ — U)]_‘ — (49)
(2m) E,—E, + Ep(P) - En(P+ Du '“Pu) + 1€
where ny 5(7') are the occupation numbers in the Fermi sea of protons and neutrons
respectively®).
Equation 48 provides the muon capture width as a function of kg, and kF n,

the proton and neutron Fermi momenta or equivalently pp and pp, the proton and
neutron densities of the medium (pp 0 = k3  /372).

8) Note that I" is essentially given by the imaginary part of the yu self-energy diagram depicted in
Fig. 12, when the ph excitation and the outgoing neutrino are put on shell. Up to some kinematical
corrections, this imaginary part is given by the imaginary part of the Lindhard function U (Pv=pu),
which accounts for the ph excitation, and by Z Z |T|? which accounts for transition squared
operator {16].

°) Note that in Eq. 49 the second term of Eq. 9 has not been included because it does not
provide imaginary part for ¢ = E,-E,>0.
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u

Fig. 12. Many-body Feynman diagram for the muon self-energy related to the u™p — nv,
process.

3.2 Strong renormalization effects

The dominant contribution, (= 80%), to the process comes from the term pro-
portional to g% in ) 5~ |T'|>. The non-relativistic reduction of the axial-vector term
in the nucleon current is of the type gao’r*. We know (see section 2.2) that this
external source has the virtue of polarizing the axial charge of the nuclear medium
which can produce an important renormalization of the capture rate. Microscopi-
cally we can depict the situation by saying that the Feynman diagram of Fig. 12 is
now modified to include the series of diagrams implicit in Fig. 13, where the wavy
line stands for the spin-isospin p-h or A-h interaction, Vi_; defined in Eq. 40 for
the p-h—-p-h interaction case, or a similar one for the case of p-h-A-h or A-h-A-h
interactions by means of the replacements in Eq. 42.

Fig. 13. Many-body Feynman diagrams accounting for the medium polarization in the
spin-isospin channel driven by the 4™ p — nv, transition.

The sum implicit in Fig. 13 leads to two independent geometric series in the lon-
gitudinal and transverse channels (the term with g2 involves the trace of g3 o;0; U,
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which can be equivalently written as g30;0;U[d:§; + (6;; — §id;)], explicitly sepa-
rated into a longitudinal and a transverse part). After a little of algebra one finds
that the renormalization can be taken into account by substituting

2 Im [ o (1 ImU +_2_ ImU
A A\ 3TT—TovpE T31-UWE)

where U(= Un + Ua) is the Lindhard function defined in Eq. 24 which accounts
for p-h as well as A-h excitations in Fig. 13. In obtaining Eq. 50 above, the fact
that Ua does not have an imaginary part, in the kinematical regime explored by
the muon capture process, has been taken into account.

The pieces involving the pseudoscalar term, gp, behave differently. Indeed the
gp & coupling, in the non-relativistic limit, singles out the longitudinal part of the
interaction and the renormalization is then

(50)

_ ImU

—UVz’
Analogously, the terms involving gy single out the transverse part of the inter-
action and we have

_ Im U
gy ImU — gﬁ/lll (52)

“ UV

The other terms, which are rather small, are not renormalized.
_ After performing the renormalization of Eq. 48, we obtain the new capture width
I'(pp, pn). The local density approximation (LDA) to go to finite nuclei is obtained
by replacing pp — pp(7), pn — pn(r) for the actual nuclei and evaluating

r= / 42 (@13(7) | [ (pp (7). pn(r)) (53)

where @14(7) is the muon wave function in the ls state from where the capture
takes place. The LDA assumes implicitly a zero range of the interaction, or no
dependence on ¢ equivalently. The ¢-dependence of the form factors is extremely
weak and thus the LDA prescription becomes highly accurate [16].

Note that the approach of reference [16] and presented here differs substantially
from standard ones, which require the evaluation of two-body matrix elements for
the ground state of the nucleus. In this approach, one does not evaluate any nuclear
matrix element and the only nuclear information needed is the proton and neutron
densities. As pointed out in the introduction some approaches use a closure sum
over the nuclear intermediate states [17-19]. Others, more elaborated and accurate
[20], use a sum rule approach which still relies upon an average excitation energy,
although the dependence of I' on this variable is rather smooth, unlike in the
closure sum case. Here the Lindhard function has summed the contribution from
intermediate nuclear states (the excited states of neutrons on top of the Fermi sea).
On the other hand, the concept of Z.g has not been needed. Equation 53 provides
I" directly from the muon wave function and the function I'(py(r), pn(7)).
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3.3 Results

A rather exhaustive list of nuclei was studied in Ref. 16. In this reference results
for nuclei from SLi (I" ~ 0.3 x 10*s™!) up to 2°°Bi (I' =~ 0.15 x 10%s™1) are
presented. The overall agreement between the theoretical results and the experiment
is spectacular considering the amount of nuclei studied and the large variation of the
rates (four orders of magnitude) from light to heavy nuclei. In Fig. 14, a selection
of the most stable isotopes as a function of Z are shown in order to give a visual
idea of the quality of the agreement found in Ref. 16.
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Fig. 14. Total rates for negative muons captured by the most stable isotopes from [16].
Circles are theoretical results. Experimental limits from different groups are also shown.

In Ref. 16, the effects of the muon momentum and binding energy, Pauli blocking
(which turns out to be very important, because the outgoing n in the p=p —
nv, reaction can not go to any of the neutron occupied states'’)) on the rate are
carefully examined. Here, we will concentrate on the effects of the renormalization
discussed briefly in section 3.2 and more carefully in Ref. 16. These effects play a
very important role in this problem. Indeed, in Fig. 15 the results calculated with
and without the renormalization as a function of Z are shown. For medium and
heavy nuclei the nuclear renormalization reduces the results by about a factor two
and 1t is essential to produce agreement with the experimental numbers. This is
a very interesting process, which evidences the strong nuclear renormalization on
top of the weak interaction process, which can be brought under control as we
have shown here. Although similar effects due to the spin-isospin polarization of

10)

This is taken into account by means of the factor 1 —n3(k) in the Lindhard function of Eq. 49,
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the nucleus also appear in many nuclear processes, sometimes it is more difficult to
asses their importance since the nuclear interaction itself can be less controllable.
However, it is interesting to mention that these medium polarization effects have
been also considered (as we will see during these lectures) in connection with the
problem of X-atoms and hypernuclei, A hypernuclei, K*-nucleus scattering, pionic
atoms, m-nucleus scattering at low energies ...The clean effects of this medium
renormalization shown here stress and reinforce the interpretation given for these
other phenomena.
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Fig. 15. The nuclear medium renormalization effect in the calculation of the total nuclear
capture rates of u~ from [16]. Crosses and circles are calculation without and with the
renormalization respectively.

4 X hypernuclei and atoms!?)

The case of the £~ atoms and £ hypernuclei offers a very interesting example
of the density effects in the T-nucleus interaction. The hyperon ¥ in a nucleus
can decay strongly through the channel N — AN. This reaction does not violate
strangeness and hence proceeds via strong interaction.

In the case of the ¥~ hyperon, the Coulomb potential alone, irrespective of
the strength of the short-range nuclear potential, is enough to bind ¥~ atomic
states. Some of these states (the most bound) are such that the S-wavefunction
is essentially inside of the nucleus, hence the name hypernuclei is more suited to
them, although there is a gradual transition from these hypernuclear states to more

11y This section is based on Ref. 21.
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properly called ¥~ atoms [22], where the orbits are far away from the nucleus. The
question of the observability of X-hypernuclear states depends upon their width
and the energy separation between the levels. If the width is larger than the level
separation such hypernuclear states will not be observed in any nuclear reaction
(the most used have been of the type (K~, 7) [23,24] and (7, K*) first proposed in
[25]). Although many £~ atomic states are known [22] there is a limitation to the
observability of such states given by the detection method. The £~ (as in the case
of 7~ atoms) cascades down through atomic orbits and approaches to the nucleus.
The absorptive width increases in this process and when it exceeds the radiative
width, the ¥ particle gets absorbed by the nucleus and no further level of smaller
energy can be reached. However, such states exist and their observation would be
most interesting to get a proper understanding of the dynamics of the X-nucleus
interaction. No such states have been clearly observed yet. On the other hand there
is the possibility that there are bound states of £9 or ¥ hypernuclei.

The experimental situation is very unclear, ten years ago there were some claims
at CERN [23] of sharp peaks in the (K~, 7} which would correspond to X-hyper-
nuclear states in 12C and 0 with widths of around 5 MeV and most recently at
KEK there were signals of a possible bound state of the $He hypernucleus!?) in
the (K=, 7%) reaction [24]. In both cases, new experiments designed to confirm
these findings failed to do it'%) and one of the few evident conclusions is that more
statistics and more experiments are needed to clarify the situation.

In spite of the limited experimental information available, the possible discovery
of the sharp resonances stimulated much theoretical work aiming at understanding
the origin of such narrow widths, since simple estimates provide widths between
20-30 MeV for the T-hypernuclear states'?). This is compatible with empirical de-
terminations of the ¥~ -nucleus optical potential, from X~ -atoms data (energy shifts
and widths) [22]

V(r) = =U(r)—iW(r),

U(r) = (.‘28:}:3)3/%5Z [MeV],

W(r) = (15:&:2)%—? [MeV]. (54)

We see that through I' = 2W for p = po, one obtains I" & 30 MeV, as the esti-
mate based on the cross section gives. Solving numerically the Schrodinger equation
with the potential of Eq. 54 one gets widths with values around of 20 MeV.

In the rest of this section, we will present an approach [21] to the problem based
on the use of the induced interaction, discussed in section 2.2, which provides small
widths for the bound hypernuclear states, being at the same type compatible with

12) With a binding energy of about 3.2 MeV and a width of 4.6 MeV.
13) See for instance the discussion in [21].
14) A simple estimate of the hypernuclear width through the formula I' & opuvre, with o the
cross section for the XN — AN reaction and v, the relative velocity of the LN system, gives
I' 22 30 MeV for p = pe.
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the ¥~ -atom data. The ¥~ atomic information is re-analyzed from this point of
view and its information is used to obtain energies and widths of more bound %—0+
states of the hypernuclear type. One obtains in this way many bound states in light
and medium nuclei, where the widths are narrower than the separation between the

levels.

4.1 Quenching of the imaginary part of the Y-nucleus optical potential

We should note that the density regimes of the &= atoms and % hypernuclei are
very different. While in the ¥~ atomic states, the £~ has little overlap with the
nucleus, feeling effective densities around p = 0.1pg, in the ¥ hypernuclei the & will
feel nuclear densities of the order of py. This is a place where a density dependence
in the imaginary part of the self-energy would manifest itself clearly, given the two
very distinct density regimes where the atoms or the hypernuclei live.

We can construct the ¥ self-energy piece containing the XN — AN transition.
This is depicted in Fig. 16 as a standard many-body diagram. We shall call 5* the
2 self-energy inside of the nuclear medium, equivalent to the optical potential.

b

Fig. 16. Many-body Feynman diagram for the & self-energy incorporating the SN — AN
transition. The dotted line indicates the cut leading to Im 2 when the particles cut by
this line are placed on-shell in the integration over the internal variables.

The ¥ has isospin T' = | and the A, T' = 0. This forces the exchanged objects
responsible for the interaction N — AN to carry T' = 1, Fig. 17. There is a
possibility of having ¥N — AN mediated by kaon exchange but this contribution
is rather small [26]. Hence we are left with the spin-isospin channel, about which
we are turning around these lectures. We can again use the v 4+ p model modified
by short range correlations as we did in Eq. 40. Only the couplings and the short
distance correlations are now different. The new couplings are given by ([27])

2
fonn _ 0.019,
47
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Boar _ 559 (55)
4r T
As it was discussed for the case of the NN interaction in section 2.2, the short-
range repulsive potential part can be very well approximated by means of a local
correlation function. The ¥N — AN effective interaction (G-matrix) in a good
approximation 1is

GeN-an(r) = g(r)Von—aN, (56)

given by [21] where Vsn—aN represents the potential due to 7 + p exchange and
with g(r) a typical correlation function which vanishes as r — 0 and goes to 1 as
r — oo. This procedure is quite appropriate to the present case because it allows
us to include the effect of the hard core used in the ¥N — AN transition potential
in the analysis of [27]. We shall use a practical correlation function

g(r) = 1= jo(ger) (57)

by means of which we obtained a fair reproduction of a realistic correlation function
in the NN interaction with values q. ~ 780 MeV/c. The value of q. should not
necessarily be the same here given the different nature of the forces. In this case ¢,
should be indicative of the inverse of the hard core radius r. of the analysis of [27],
q. ~ 500 MeV /c.

Hence we get now different longitudinal and transverse effective interactions:
V¥, V;Z, which can be obtained from the expressions of Eq. 41 by using the new
value of ¢, and replacing frnn and f,nn by fear and foa, given in Eq. 55.

Fig. 17. The LN — AN interaction mediated by an object of isospin 7" = 1 in the
t-channel.

We have carried out the first part of the program in constructing the induced
interaction. So far we have constructed the transition (G-matrix or effective inter-
action. The next step is to take into account the p-h and A-h excitations to all
orders in the RPA sense produced by the spin-isospin ¥N — AN interaction. This
is depicted diagramatically in Fig. 18 for the particular case that we have here.
Note that the first p-h or A-h excitation is produced by Ggn—aN, but after that,
all the new excitations are produced by the NN or NA effective interactions. Since
the interaction responsible for the YN — AN transition carries 7' = 1 in the spin
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channel, as we discussed above, this will automatically select the spin-isospin chan-
nel of the NN or NA effective interactions between the p-h or A-h for which we use
the expression of Eq. 40, and equivalent expressions for the NN — NA transition
or NA — NA interaction by changing ¢ — S, ¥ — T and f by f* for each A
involved.

The other ingredient needed to construct the induced interaction is the polar-
ization contribution provided by the p-h or A-h excitation. This is done by means
of the Lindhard functions Uy and Upa defined in Eqgs. 16 and 25.

A N
A NOfA NCJA g N
ind
oztoan] _ | Savmaw] (}wh, ..
P N z N Z N
z N

Fig. 18. RPA series for the induced ZN — AN interaction of Eq. 58. Both p-h and A-h
excitations (Un,a (¢)) are included, as well as the p-h and A-h interaction (Vi (g) in Gnn)
between them. Ggn—_an is the effective interaction.

With the splitting of the interaction into longitudinal and transverse parts the
sum implicit in Fig. 18 can be easily done and it amounts to summing two inde-
pendent geometrical series, one for the longitudinal part and another one for the
transverse part, as in Eq. 43. One finds

ind _ Vis(e) . . Vin(g) (1) (z)
o = [t * T o -] 6

with U(q) defined in Eq. 24.

Now, we are in disposition of calculating the ¥ self-energy, 2* | due to the TN —
AN transition inside of the nuclear medium (Fig. 16). By following the standard
Feynman rules [1, 2] one finds

d*p dq in(p) i(l-n(d+p))
(2m)* ) (2m)tp — En(P) — i€ ¢° + p° — En(T+P) + 1€

. L Y S, (69)

kO — qO - Ej/\(]C - Q) + 1€ SN,SNHEN,ENY BA

—iZ* (k) = —

T is the transition amplitude in the ¥N — AN process and s,t stand for the spin
and 1sospin of the internal variables. The self-energy will be independent of the
spin and isospin of the ¥ in spin saturated symmetric nuclear matter. We can then
substitute the sum over spins and isospins of T2 by QEZ T?, where now we sum
over spins of A, N (final state), and average over spins of £, N (final state). In the
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model presented here [21] 25 5" 72 depends only on the momentum transfer. This
allow us to carry out the integral over p since only the particle-hole propagator
depends on it. By recalling Eqs. 16 and 9 for the Lindhard function we identify this
integral with the first term of Eq. 9. However, the Lindhard function contains an
additional term (second term of Eq. 9). By including this term we are adding the
left diagram of Fig. 19 to the right one of the same figure, already considered for
the ¥ self-energy. This additional diagram only contributes to the real part of X*.
Thus we can now write

i 4 L 2

@2mt N

P*q

Fig. 19. X self-energy diagrams included in Eq. 60. Right: Direct graph contributing to
both Re X* and Im 2*. Left: New graph contributing to Re 2 only.

The T-matrix contain terms like ((¢°)2 — ¢? — m? +in)~!, hence the poles of T
lie in the second and fourth quadrant of the complex ¢° plane, as shown in Fig. 20.
As it was discussed in Fig. 6 the Lindhard function U(gq) has cuts also in the second
and fourth quadrant of the complex ¢° plane. The remaining analytical structure in
the complex ¢° variable can been seen in Fig. 20. This particular structure suggests
a Wick rotation to perform the ¢° integration. Thus

/ dg® —+—/ dg°® +/ dg® = 27i Res(¢® = k° — E,)
C +i00

K0

x 0(k® — Ex(k - 7)), (61)

where C stands for the circles in the infinity in Fig. 20. Since the integral over C
vanishes one finds (note that 72 is a real function which depends on ¢°)

(k) = i/ d3q /f""’ dg® Un(q) ST

(273 Jioo 27 2 kO — g0 — Ep(K — q)
d%¢ Un(q) =

where the first term provides only a real background, while the second gives rise to
both a real and an imaginary part.
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Fig. 20. Analytical structure of the integrand of Eq. 60 in the complex variable ¢°. Shown
in the figure is the Wick rotation used to perform the integration over ¢°.

Inclusion of the induced interaction leads from Fig. 19 to Fig. 21 and results in
the substitution in Eq. 62 of

Un Y SIT? = Un(a) (ViE(9) +2Vi4(9))

Ul@Vis(e) | 2U(9)Vi(g)
1-U(gWi(g)  1-U(g)Vi(q)’

Z

Fig. 21. Diagrams contributing to the T self-energy, once the induced interaction is
included.

698 Czech. J. Phys. 46 (1996)



Quantum field theoretical methods in many body systems

The final expression for the & self-energy is then obtained from Eqgs. 62 and 63.
In particular for its imaginary part, taking into account that V|, and Vlzt are real,
one finds

Im Z* (k) = %/(—%’—3—9 [kO—EA(E-—d')J

(64)

[ ImU(q)Vi§(q) 2ImU(q)‘4§:(9)J ,
L=U(@QV(g)]? * |1-U(g)Vi(q)]? Ok~ Bp(E=7)

As we discuss at the end of section 2.2 the induced interaction produces an
enhancement and a quenching of the longitudinal and transverse modes of the
interaction, respectively. The net effect on the quantity V& + 2V% depends on the
weight of the longitudinal and transverse parts in this expression. The longitudinal
part Vi gives only 8% of the total V2 + 2V,%, while 92% of the contribution in
that sum comes from the transverse part 2Vi% [21]. It is clear after this exposition
that the net effect of the induced interaction will be to produce a quenching in
the imaginary part of the optical potential X-nucleus (Im Z*) as a function of p.
Coming back to our discussion at the beginning of this section, £~ atoms and %
hypernuclei are then going to feel a very different potential: while for the first ones
the effect of the induced interaction will be negligible, for the latter ones this effect
1s going to play an important role.

In Fig. 22 we show results (from Ref. 26) for Re 2* and I' = -2 Im X* as a
function of the density in lowest order and with the induced interaction. At lowest
order (Eq. 62), we can see that the real part is in a good approximation a linear
function of the density while the imaginary part shows some quenching at high
densities due to the Pauli exclusion principle. The use of the induced interaction
(Eq. 63) has a little effect on the real part, however it produces a drastic reduction
of Im 2™ at large densities. While at low densities, p & 0.1pg, Im £*(p) is approx-
imately linear in p, it deviates soon from a linear function and shows saturation
properties at p = 0.6pg as a function of the density. One may wonder why one does
not find the same quenching in the real part. The reason is that in Re 2* the range
of ¢'in the integration is not limited as in Im 5*. Larger values of || contribute
now to the integral and with U(g) ~ |§]~! the effects of the renormalization of
Eq. 63 are smaller.

4.2 Results

A potential like the one in Fig. 22 leads immediately to narrow hypernuclear
states, as i1t was first pointed out in Reference [26]1%).

At the same time we can see that for low densities, a linear extrapolation of
I'(p) = =2 Im X*(p) from Fig. 22 gives '™ (p) ~ 24p/po [MeV], which should be
compared with 2W(r) of Eq. 54 from a best fit to £~ atoms data. The theoretical

15) In this reference widths of around 5 MeV were found for the 1s and 2p hypernuclear states
in 12C and 180.
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Fig. 22. Results for the ¥ self-energy from [26]. Straight line: linear extrapolation from
p = 0. Line labeled as “lowest”: lowest order result from Eq. 62. Line labeled as “full”:
full induced interaction results from Eqgs. 62 and 63.

results are about 15 % below those quoted there. This tell us that with that poten-
tial, one can now get narrow widths for hypernuclear states and still be consistent
with the £~ atomic data [28].

The results of Fig. 22 led us to the conclusion that the X optical potential has
a real part approximately proportional to the nuclear density while the imaginary
part has some saturation properties as a function of the density. However, while the
evaluation of the imaginary part of £* is rather reliable, the real part presented
here, and first evaluated in [26], is only a piece of the total real part of £*, which
would also come from other sources, mostly from Hartree pieces. However the results
of [26] have the virtue of showing that Re £* is in any case approximately linear
in the density and so would be the Hartree pieces. Due to this, a parametrization
of Re Z* proportional to p seems most indicated.

In order to perform a systematic study of bound states with the ¥ nuclear
potential one needs the strength of the real part. In Ref. 21 a fit of the optical
potential -nucleus to the ¥~ atoms data was done. The real part was taken to
be linear in density, whereas for the imaginary part was taken a functional which
implemented the saturation properties discussed in Fig. 22. Thus, the following
optical potential was used:

V(r) = =U(r) —iW(r),
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U(r) = ng—l()zl [MeV],

2
W(r) = Wo arctan (5 p(r)) [MeV]. (65)
5.2 4
The density dependence of W(r) in Eq. 65 is inspired by the results found in
Fig. 22. Actually a good fit to I'(p) in Fig. 22 can be obtained with values of Wo
of around 12 in Eq. 65. From the fit!¢) to the ¥~ data one gets [21],

Up = 31+ 4 MeV,
Wo = 1542 MeV . (66)

These results are in agreement!”) with those of the best fit by Batty et al. and
quoted above in Eq. 54.

The results obtained in Ref. [21] using the potential of Eq. 65 for £~ atoms are
quite similar to those obtained with the linear potential of Batty et al. (Eq. 54) and
both of them give a fair reproduction of the experimental data. However, for more
strongly bound X~ states the difference in the shifts and specially in the widths
become more apparent, particularly in the hypernuclear states as shown in Table 1.

Table 1. Binding energies (B) and widths (from Ref. 21) of different %% hypernuclear
states in 2" Al and 3?S calculated with linear (Eq. 54) and saturating potentials (Eq. 65).
All numbers are in keV.

T %0 ot

2s 2p 1s 2p 1s 2p 1s

B LIN | 1148 1380027208 | 7256 [20152 795113128
2771 SAT | 367414700 (27636 8372 (20649 2149|13715
r LIN | 10700 23310128895 (2256228517 | 21697 | 28087
SAT| 3580 7060| 7683 | 6894| 7638 | 6655| 7581

B LIN | 3622{16040|27581| 8549 |19514| 111311493

s2g SAT| 555116740 {27896 | 9410 |19897| 2196 |11969
r LIN | 13100 |22700 26857121985 {26476 21133 |26028
SAT| 4560 | 7140 7628 6982 7579 | 6754| 7513

In this table (elaborated from the results of Ref. 21) we show energies and widths
of the ©~ hypernuclear states in 2”Al and 32S with both potentials!®). In this table
we also show results for Z1° hypernuclear states, obtained using the same strong
potential but killing or making repulsive the Coulomb interaction.

16) Solving numerically the Schdrodinger equation for the different nuclei with the Coulomb
attractive potential in addition to the potential of Eq. 65.

17y Note that for low densities, as in the case of £~ data, W(r) & Wop(7)/po

18) For the linear potential (potential of Batty et al.), a value of 31 MeV for the real part, instead
of the value 28 +3 MeV quoted in Eq. 54, is used. The reason for this change is that a better fit to
the ¥~ atom data is obtained with this new value than with the originally proposed in Ref. 22.
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In the case of ¥~ hypernuclei, with the linear potential one finds 1s and 2p states
(in the atomic nomenclature) with binding energies of about 28 MeV and 15MeV
respectively. The interesting thing is to note that the widths are of the same order
as the binding energies. Since the widths are larger than the separation energies
this would rule out the observation of these states. The results with the saturating
potential are rather different. The widths are reduced by about a factor 3 or 4.
The widths range now from 4 MeV to 8 MeV for the 2p and 1s states. The binding
energies increase a bit with respect to the linear potential because the absorptive
part of the potential (Im Z*) acts as a repulsive force and the saturation makes
this repulsion less effective. As a consequence one can see now that the widths are
smaller by a fair amount than the separation energies, which should make these
states observable. Results for Y19 are qualitatively identical.

To conclude, we have seen how the renormalization of the YN — AN interaction
inside of the nuclear medium modifies drastically the features of ¥ hypernuclei,
allowing in most of the cases for their observability, which otherwise would not be
possible.

5 Pion-nucleus interaction

In this section we will study the influence of the nuclear medium corrections in
the dynamics of a m-nucleus system at low energies. Our discussion will be based on
the findings of the Refs. 29 and 30, where more details can be found by the reader.

5.1 Anomalies in pionic atoms

A pionic atom is an example of a hydrogen-like system, with the electron replaced
by a negatively charged pion. The interest in such systems originates in the high
precision and selectivity which is typical of atomic spectroscopy.

Negative pions are stopped in matter by purely electromagnetic interactions with
electrons and nuclei. The pions are first captured into highly excited molecular
orbits, substituting for electrons, which are ejected. The pions de-excite stepwise
into more tightly bound orbits by the ejection of Auger electrons and emission of
X-rays; they are finally centred on the individual nuclei. When the size of the orbits
becomes smaller than that of the innermost electron orbit around the nucleus!®)
the pion finds itself in the presence of the unscreened nuclear Coulomb field. Insofar
as nuclear effects can be neglected, the physics is now that of the Bohr atom. The
pion is the simplest example of a particle with electromagnetic interactions that
obeys the Klein-Gordon equation. In fact, these highlying orbits of pionic atoms
provide a quantitative test that the Klein-Gordon equation correctly describes the
electromagnetic interactions of a boson.

Our primary interest during these lectures is, however, in the strong pion-nuclear
interactions. The pion continues decaying down, due to electromagnetic processes,
to inner orbits where it start feeling the effect of its strong interactions with the
nucleons of the nucleus. They perturb the spectrum of pionic atoms in low-lying

19) Note that mmx /me & 260.
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orbits. The characteristic deviations from the purely electromagnetic spectrum can
be accurately measured; they are a unique selective source of information on the
pion-nuclear system in the energy region close to threshold (w & my).

For those states which can be studied experimentally, the probability of finding
the pion inside of the nucleus is small. Because of this small overlap, the effect of the
strong pion-nuclear interaction can be treated to leading order as a perturbation
(few per cent) of the Coulomb energies. In addition to the shift of the atomic
level, there will also be a broadening owing to the pion-nucleus absorption. This
complex energy “shift” relative to the spectrum in the absence of strong interaction
1s denoted by

6E =¢— LI, (67)

where ¢ is the strong interaction shift and I" the absorption width. The sign of € is
defined such that a repulsive shift corresponds to € > 0.

When the pion nuclear pion absorption overwhelms the radiative transition, no
more pionic levels (binding energies and widths) can be measured by looking at
the X-rays from the electromagnetic decay. Thus, the properties of the 1s states
are not known for Z larger than about 14, of 2p states for Z larger than about 35,
etc. .. (for instance, for Z > 14 the 2p absorption width is around 2 or 3 orders of
magnitude larger than the electromagnetic one due to the X-transition 2p — 1s
and therefore this electromagnetic transition is very difficult to observe). For heavy
nuclei like 2°8Pb, information is available on the 3d and 4f levels.

The strong interaction shifts and widths have been investigated systematically
for a large number of nuclei throughout the periodic table. We have very accurate
measurements of boths shifts and widths, with precisions better than 5 %, which
range from few eV for the 2p levels in the '2C region up to tens of keV for the
3d levels in the 2°8Pb region. So we have access to a very valuable and accurate
experimental information (it explores four orders of magnitude) about the details
of the pion-nucleus interaction.

The first theoretical approaches to the problem were based on the impulse ap-
proximation in nuclear matter. To first order in the density p, the pion self-energy
(IT(wr), wr is the pion energy) in nuclear matter or equivalently the pion-nucleus
optical potential (2wy Vop(wr) = T (wy)) is fully determined by the pion-nucleon T-
matrix in the vacuum, IT(wy) = T(wx)p, [31]. Near pion threshold the pion-nucleon
T-matrix can be safely approximated by the s- and p-wave contributions.

This leads to the threshold optical potential in coordinate-space for finite nuclei

[32]
2wr Vop(wr) = =4 [bo(pp(7) + pn(r)) + b1(pp(r) = pu(r))]
+47 {Fleolpp(r) + pa(r)) + er(pp(r) = pu(PDIV ) (68)
with pp n the proton and neutron densities. The parameters bg (co) and by (c1) are
determined in terms of the isoscalar and isovector s- wave (p-wave) 7N scattering

length (volume) parameters, respectively. To obtain Eq. 68 a certain method to
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translate nuclear matter results to finite nuclei has been used. We will not enter
into details here, however we just mention that the local density approximation
(Pp,n = pp,n(r)) turns out to be exact for the zero-range s-wave part of the optical

potential and that the non-local ¥V ...V structure in the p-wave part of the potential
comes from translating ¢'? in nuclear matter (where only forward propagation is
allowed) to ¢g” in finite nuclei.

The application of the optical potential of Eq. 68 to pionic atoms requires ad-
ditional ingredients. In particular the phenomenon of pion absorption is a central
feature in pionic atoms and must be included in the model. At pion threshold
all parameters g, co; are real and thus the potential of Eq. 68 is purely real
and cannot account for the absorptive widths of the pionic levels. The pion can-
not be absorbed by a single nucleon, it is absorbed predominantly by a pair of
nucleons?’), which suggests the following parametrization of the absorptive contri-
bution to the pion-nucleus optical potential [32]

o

2w V2 = —dr (Bopz(r) — CoVp(r)V] . (69)

Here the complex parameters By and Cj are related to the underlying pair pro-
cess, with the s- and p-wave pair absorption given by Im By and Im Cy respectively.
The real parts Re By and ReCy, describe the corresponding dispersive contribu-
tions.

Phenomenological descriptions of the accurate data on pionic atoms are generally
based on the optical potential of Eqs. 68 and 69 with minor variations??). It is
common in such an analysis to fix the dominant first-order parameters bo,1 and ¢g 1
at their empirical values from 7N scattering. The absorptive complex constants
By and Cp are treated as free parameters. These type of potentials gave good fits
to experimental data for long time?2). Then, the experimentalists developed new
techniques to measure shifts and widths of new deeper atomic levels (1s up to
24Mg, 3d up to 2°°Bi). One of the interesting surprises of this new wealth of data is
that the traditional and successful Ericson-Ericson potential [32] (Eqs. 68 and 69),
or equivalent ones, failed to reproduce the new widths and shifts, and systematic
discrepancies remained with some of the data. Particularly the 3d widths of heavy
nuclei (Au, Pt, Pb, Bi) and the ls levels in not so light nuclei (Mg, Al, Si) were
grossly overestimated. Serious attempts to solve these “anomalies” have been made
by changing the potential, using different parametrizations, but the discrepancies

20) At threshold, three or more nucleon pion absorption is much smaller than two nucleon

processes.
21) In addition to some small kinematical corrections, there is an important and well established

ingredient which must be added: the Lorentz-Lorenz correction. It is implemented by the following
substitution [32,29] in the p-wave of the pion-nucleus optical potential

f(r)
4V f(r)V — 4w\7mﬂ;—).¥7, (70)

where the Lorentz-Lorenz g’ parameter turns out to coincide with the Landau-Migdal parameter

introduced in Eq. 44 in the context of NN interaction [29].
22) For an excellent review of results obtained with these type of potentials see Ref. 33.
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with experiment remained. An excellent review of the so called “anomalies” in
pionic atoms can be seen in Ref. 34. Further improved results are obtained with the
potential of Ref. 35 where the isospin dependence of the second-order parameter
was left free and fitted to the data. The results of this unconstrained fit do not
stand a physical interpretation. In physical terms it implies a large amount of
7~ absorption by nn pairs, which is forbidden by electric charge conservation,
and for some combinations of neutron and proton densities it produces negative
probabilities of pion absorption [36].

In what follows, we will present the main features of a microscopical model, de-
voloped in Refs. 29 and 30, of the pion nucleus optical potential at low energies
and at pion threshold. This model provides a density dependent potential where
each term has a theoretical ground and a relation to the interaction mechanisms in
the system. The essential new ingredients which have been added to the Ericson-
Ericson’s picture are the use of the RPA induced interaction in a nuclear medium
(discussed in Eq. 43) and the explicit calculation of the isospin dependence. These
new ingredients lead to a highly non-quadratic density dependence of the imaginary
part of the optical potential pion-nucleus, which shows saturating properties as the
density increase (as we have seen in the case of ¥ hypernuclei and atoms) which pro-
vides a reasonable description of the currently known pionic atom data (including
the so called “anomalous” data) and pion-nucleus scattering at low energies.

5.2 Pion-nucleus optical potential. Results for pionic atoms

The model for the pion nucleus optical potential contains the mechanisms up to
the level of 2p-2h excitations. 3p-3h mechanisms have been shown to be negligible
at low energies. The diagrams considered are depicted in Fig. 23.

(@ AT,

Fig. 23. Diagrams used in the evaluation of the pion nucleus optical potential.
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The black dot in Fig. 23 represents the 7N s-wave effective interaction, which
has been taken from the experimental on shell s-wave T-matrix, and the off-shell
extrapolation has been taken from Ref. 37. The white square in Fig. 23 represents
the p-wave 7N amplitude, which consists of nucleon and delta direct and crossed
pole terms of Fig. 9. One of the exchanged pion lines in Fig. 23 is replaced by the full
RPA induced interaction where meson exchange and short range correlations are
included, Eq. 43. At energies above threshold the imaginary part of the potential
assoclated to quasielastic scattering is included and the second order Pauli corrected
rescattering pieces are kept in all cases. The calculations, in Refs. 29 and 30, are
carried out in isospin asymmetric nuclear matter and these results are applied to
finite nuclei by means of a local density prescription.

The important new features of this potential are:

i) Isospin dependence of the imaginary part of the potential, in particular that
of the s-wave. For the s-wave, the structure (p, + pn)? obtained in symmet-
ric nuclear matter is replaced by 2(,0}?; + p2) in asymmetric nuclear matter
(equally normalized for N = Z). For the p-wave, the nuclear pion absorption
occurs predominantly on a deuteron-like nucleon pair at short distances. The
interaction is then proportional to the product of the average neutron and
proton densities pp,(r)pn(r), and hence the functional (pp + pn)? in symmetric
nuclear matter should be replaced by 4p,pn (again equally normalized for
N = Z). We will see that the basic problem in the anomalies is an imbalance
between the data in light nuclei and in heavy ones. For light nuclei, with
N = Z, all functionals (pp + pn)?, 2(p2 + p2) and 4p, p, give the same results.
However for heavy nuclei, let us take 2°®Pb for instance, with respect to a
standard (pp + pn)? potential the 2(p2 + p?) structure of the s-wave reduces
the strength of this part by 27%, while the approximate structure 4p,p, of
the p-wave reduces it by about 5 %. Altogether this means that the 3d width
is reduced by about 15 % (assuming equal contribution to the width of both
s- and p-waves [29]) with respect to a standard (pp + pn)? potential.

i1) Density dependence, showing saturating properties as the density increases,
of the imaginary part of the p-wave part of the potential®®). This quenching
of the imaginary part of the p-wave potential at high densities is due to the
Lorentz-Lorenz effect (Eq. 70) and the polarization of the medium by the
spin-isospin interaction, which is the main topic of these lectures.

To understand the origin of this quenching at high densities due to the pola-
rization of the medium, we are going to consider one of the most important
contributions to the imaginary part of the pion-nucleus p-wave optical poten-
tial. This i1s depicted in Fig. 24 and corresponds to the contribution of the
A-h excitation to the imaginary part of the p-wave optical potential. It con-
tributes through the A self-energy inside of the nuclear medium. If we look at
the most elementary A self-energy diagram shown in Fig. 25, we would get an

23} Calculations show that the density dependence of the imaginary part of the s-wave potential
is in good approximation quadratic [37]. The main reason for that is that in the s-wave only pion
exchange (purely longitudinal) is allowed with no short distance correlations or transverse, which
is responsible for the quenching, contributions.
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Fig. 24. Feynman diagrams for the direct A-h excitation term including A self-energy

corrections. The diagrams (b)—(d) give rise to an imaginary part of the pion self-energy

since they incorporated the pion absorption channels. The dotted line in (b) shows ex-

plicitly the intermediate state, 2p-2h, coming from pion absorption. The RPA diagrams

in (c) and (d) are responsible for the nonlinear dependence of the A self-energy on the
nuclear density.

Fig. 25. A self-energy diagram.

imaginary part for the A self-energy when the lines cut by the dotted line
are placed on shell. At pion threshold, this diagram does not contribute to
the imaginary part of the pion self-energy, because there is no available phase
space. To evaluate the medium corrections to the A self-energy of Fig. 25
inside nuclear matter we proceed by renormalizing the N and 7 propagators.
If we dress the pion propagator with one p-h excitation we are left with the
diagram of Fig. 26, where one realizes that with a transition from the 7" = 3/2
to the 7' = 1/2 states one needs, as in the case of the ¥ self-energy in the
previous section, a 7' = 1 object. This can be a pion or rho meson, and ac-
cording to the arguments of the preceding section and section 2.2, we should
use there the effective spin-isospin interaction in a first stage and the induced
interaction ultimately (Fig. 27) and obtain in this way the diagrams shown
in Fig. 24.

As in the case of ¥ hypernuclei, in Ref. 29 an important quenching of the
imaginary part of the A self-energy was found at high densities, which gets
translated in a similar effect on the imaginary part of the p-wave pion-nucleus
optical potential.
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Fig. 26. A self-energy diagram in nuclear matter. Left: mediated by pion exchange. Right:
mediated by the spin-isospin effective interaction.

Fig. 27. A self-energy diagram through exchange of the spin-isospin induced interaction.

We should now try to understand the effect on shifts and widths of the sat-
urating density dependence of the imaginary part of the pion-nucleus optical
potential. The standard potentials which fit the “non anomalous” data feel an
effective density [33]. But looking at such different levels as 2p for light nuclei
(for instance '®0) and 3d for heavy nuclei, the density felt by those states
is quite different, then no longer an effective density is valid. A quenching
in density is brought by Im V? being proportional to pp. p has a saturating
behaviour in density as shown in Fig. 28 and this provides a smaller ratio of
widths of 3d levels in heavy nuclei (in the region of lead) to widths of 2p levels
in very light nuclei (in the region of oxygen) in comparison with potentials
with a quadratic behaviour in density for the p-wave imaginary part. This
quenching is important in getting a global description to all levels and atoms
throughout the periodic table.

With this theoretical potential, a fair description of the widths and shifts of the
states through the periodic table including the former anomalous atoms is obtained
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Fig. 28. Typical form of Im V?/p.

in Ref. 29, where more details can be found. As an example in Fig. 29 we show
the ratios I"(3d)/I'(2p,'® O) for different heavy nuclei, obtained with two standard
potentials (with imaginary parts quadratic in density) and the potential derived in
[29], which shows saturating properties as the density increases.
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Fig. 29. Ratio I'(3d)/I'(2p,'® O) for several heavy nuclei and potentials. SM corresponds
to the potential of Ref. 33, Bt to that of Ref. 38 and THM to the theoretical presented
here and derived in Ref. 29.
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5.3 Low energy pion-nucleus scattering

Consistency of the theoretical approach requires that the extension of the pionic
atoms optical potential describes low energy pion (7=, n%)-nucleus scattering. In
Ref. 30, the potential of Ref. 29 for pionic atoms is extended up to a range of
energies of 0 < T < 50 MeV. The results are in general quite good, which is even
more satisfactory if one takes into account that the model has no free parameters,
having been microscopically constructed.

In Fig. 30 we show the center of mass cross section for elastic scattering of 20,
30, 40.2, and 50 MeV 7t and of 50, 30, and 19.5 MeV 7~ from *°Ca, together with
the predictions of Ref. 30.

1o
3
10 B
IR  T.= 50 MeV
t " ? 3
v N v
T owp ak . 3
EOELN f E §
< T T.,= 40.2 MeV | = 3
~ 10 E-* —-EI <
o £ N E =
hel F T b kel
10" £ . . 3
£ T.= 30 NeV T,= 30 MeV
10‘; T,= 19.5 MeV E
E C (*°Ca-n") S 1
10! lc‘lllllllll‘llll‘j_J_
[} o 50 100 450
8. (degrees) 8. (degrees)

Fig. 30. Center of mass cross section (from [30]) for elastic scattering of 7% from *°Ca at
several pion energies.

The model also allows the separation of the reaction cross section into the
quasielastic (incoming pion changes its initial momentum) and absorption (incom-
ing pion is absorbed) channels. The comparison of the results of Ref. 30 for the
total reaction (quasielastic plus absorption) cross section and the absorption part
for different nuclei and energies is also quite good?%). In Fig. 31 we present the
reaction (R), absorption (A), and quasielastic (Q, the incoming pion changes its
initial momentum) cross section for 7 from '°’Au as a function of the kinetic
energy of the incoming pion.

The main conclusion of this section is that a many body description of the pion-
nucleus interaction is possible in the whole range of intermediate energies®). An

2%) There is no experimental information about the quasielastic channel yet.
25) At higher energies, in the A resonance region, the model presented here matches the work
of Ref. 39 where elastic scattering as well as the different reaction channels: quasielastic, single
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Fig. 31. Reaction (R), absorption (A), and quasielastic (Q) cross section for % from
197 Ay as a function of the kinetic energy of the incoming pion. Results are from [30].

important ingredient to obtain this unified microscopical model has been the proper
treatment and inclusion of the medium polarization effects.

6 Mesonic and non-mesonic A decay in nuclei®)

Let us study now the problem of the A decay in a nuclear medium. Here, like
in the case of the ¥ we can also expect an extra decay channel, the AN — NN
reaction. Note, however, that because there is no strange baryon with smaller mass
than the A we can not find a reaction which makes the A disappear while conserving
strangeness, like in the case of the N — AN reaction. Thus we are forced to have
the AN — NN reaction which proceeds via weak interactions. As a consequence the
normal A — 7N decay will not be negligible.

In Fig. 32 we show the A self-energy (X) diagrams whose imaginary part con-
tribute to the decay width of A inside of a nuclear medium. The pion propagation
in diagram (a), free decay, gets renormalized inside of the medium, as we saw in
the previous sections, and the pion propagator acquires a self-energy. There are
two different sources of imaginary part for the A self-energy, which correspond to
the different cuts shown in Fig. 32: when the intermediate nucleon and the pion
are put on shell (pionic decay mode) and when the intermediate nucleon and one
intermediate p-h excitation are put on shell (non-mesonic decay mode). In what fol-
lows we will study these two different channels, and the role played by the medium
corrections on each of them. We will start with the mesonic channel, where we will
work directly in finite nuclei instead of in nuclear matter as we have been doing
up to now, and we will use the pion-wavefunctions obtained in the previous sec-
tion to calculate the effect of the medium renormalization in the pionic decay of A
hypernuclei.

charge exchange, double charge exchange and absorption were fairly well described.
26) This section is based on Refs. 21 and 40-42.
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Fig. 32. A self-energy diagrams. (a) Free self-energy graph. (b), (c) Insertion of p-wave self-
energy at lowest order. (d) Generic RPA graph from the expansion of the pion propagator
in powers of the pion self-energy. (e) s-wave self-energy at lowest order.

6.1 Pionic decay of A hypernuclei

The mesonic decay of A hypernuclei has received attention in the past with most
measurements done in emulsion experiments, although some direct measurements
are now being performed [43]. At the same time the subject has also received
theoretical attention, both in light nuclei and medium and heavy nuclei. One of
the peculiar features of the mesonic A decay is that the Pauli blocking produces a
substantial reduction of the decay width with respect to its free value. On the other
hand, another interesting feature of this process is that it is very sensitive to the
pion nuclear wave function in the medium. This was first shown in Ref. 42 where
the renormalization of the pion in the medium led to large enhancements of the
mesonic width. More detailed work by following an alternative method is done in
the works of Ref. 44. A thorough work over the periodic table is done in this latter
references and the sensitivity to the pion nucleus optical potential is manifestly
shown. A review of experimental and theoretical work can be found in Ref. 21.

Here we follow the same method as in [44], to illustrate how the techniques
we have learned during these lectures can be also applied to finite nuclei without
having to use the local density approximation, and perform a detailed study of the
mesonic decay in several nuclei over the periodic table. We will make use of the
optical potential pion-nucleus derived microscopically in the previous section.

The widths obtained, measured in units of the free width, range from about 10!
to 107* from medium to heavy nuclei for decay in 7~ p, or 10~! — 10~° for decay
in 7°n.

We start from a Lagrangian for A — 7N decay

Lana = GuYn(A = Bys)7éxta +hoc., (71)
where the terms A and B correspond to the parity violating and parity conserving
parts of the interaction respectively. By following [45] 1, is assumed to behave as
the neutron state of an isospin doublet and this implements the AT = 1/2 rule

by means of which the rate or A — 7~ p is twice as large as that of A — #°n.
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Equation 71 leads to an operator in nonrelativistic form of the type

P
Ham = =G 5 - (£) 1) (72)
where G2
GHO)” _ | 45« 10-15
87
S=A=1.06, (73)
Bu
= —L =0.527,
oM 7

and p and M are the pion and nucleon mass respectively.
The free width is readily evaluated and leads for proton or neutron decay to

2

I = oGty ke [52+ (£) qu} , (74
_ MM, M2 )

qu e 2MA )

with M the A mass and g., the pion momentum in the center of mass frame. One

can see from Eq. 74 that the parity violating term is the dominant one in the decay.

In the first place we observe that, if one were to compute the A decay inside of
nuclear matter, one would get a Pauli blocking factor of the type 1 — n(k —q'), with
k and ¢ the A and nucleon momenta, which will ensure that the outgoing nucleon
cannot go to an occupied state. Since a A with & = 0 decays into a nucleon and pion
with ¢ ~ 100 MeV /¢ (energy-momentum conservation), this momentum is smaller
than the Fermi momentum for normal nuclear matter density, kp = 270 MeV/c and
the decay is forbidden by Pauli blocking, i.e., 1 — n(E — ) = 0. The overlap of the
A wave function with the nuclear surface in finite nuclei still allows the A decay
since at some radius the local Fermi momentum will be smaller than 100 MeV /e,
and also because the momentum distribution of the A wave function helps a bit
in allowing some nucleon momenta in the decay. Nevertheless the A mesonic width
decreases drastically as a function of the mass number.

There is another important fact which makes weaker the effect of the Pauli
blocking. The pion propagation in a nuclear medium is modified with respect to
its propagation in the vacuum. The pion gets a self-energy in nuclear matter, or
equivalently it propagates under the action of an optical potential pion-nucleus in
finite nucleus. In nuclear matter, the attractive character of the pion self-energy 27)
leads to a larger pion momentum for the same pion energy and thus, to a larger nu-
cleon momentum by momentum conservation. Thus, the nucleon has more chances
to have a momentum bigger than the Fermi momentum, therefore increasing the
width.

27) Above threshold, the p-wave, which is attractive, is the dominant part in the pion self-energy,
while the s-wave contribution is just a small fraction of it.

cP) =4, c™ =9,
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The width for the A decay inside a nucleus is given by [40]

P = C(a)é/ o 32w( 2m(Ex = wla) = Bx) (G

2
52

/ Sron@F(T 7) 9k (@)

+(—§)2

where ¢n, @A are the nucleon and lambda wave functions, Ex and Ej their corre-
sponding energies, w(q) the pion energy, and the sum over N runs over the unoccu-
pied orbitals n, | since spin sums are already performed. Hence we do not consider
the spin orbit splitting of the levels and work in an 1, s basis for the nuclear excited
states. In Eq. 75 and in what follows the sums over N are over proton or neutron
orbitals according to «.

The pion wave function (Co{,r—)((f, z)*) as a block corresponds to an incoming
solution of the Klein-Gordon equation

=0+ 4+ 2 Vopa(B)] BTG D) = (w = V(@) §NG 3, (76)

with Ve (Z) the Coulomb potential created by the nucleus considering finite size
effects and V¢ the optical potential pion-nucleus derived in the previous section.

One can see that
NG, E8)" = P (-4, 8), (77)

where <p§r+)(——§', &) corresponds to an incoming solution for a pion of momentum
~q.

The use of Eq. 77 for the outgoing pion wave function guarantees that pion flux
is lost to the reaction channels, (accounted for by the imaginary part of the complex
optical potential), when the pions move out through the nucleus.

In finite nuclei, the argument for the effect of the pion renormalization (change
of plane wave for the outgoing pion by a solution of the Klein-Gordon equation
with a proper potential in Eq. 75) is expressed now in the alternative language as
follows: the attraction caused by the pion-nucleus optical potential increases the
pion momenta in the pion wave function. As a consequence the matrix element
of the A wave function (in a ls;/; ground state of the A nucleus potential) and
the nucleon wave function is considerably enhanced. Note that if the A and N
potentials were the same, the A and the nucleon states above the Fermi sea are
orthogonal and the matrix elements of Eq. 75 would be zero for ¢ = 0. The matrix
elements thus necessarily increase with ¢, for the moderately small values of ¢
involved in the present process. In the two languages (nuclear matter or finite
nuclei) the physical consequences are the same: an increased probability of reaching
the unoccupied states and thus an enhancement of the mesonic width in about two
orders of magnitude in heavy nuclei, as we will see.

2
/d?’wA( £)V 3T 8)" ek (2) ] (75)
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Now we are in condition to evaluate Eq. 75 and obtain thus the pionic decay
widths of A hypernuclei. The only detail still missing is the calculation of the A
and nucleon wave-functions. In [40], whose results we will show here, shell model
potentials were used both for the A particles and the nucleons. For the A, a potential
was taken (in MeV)

V(ir) = —32%;2 , (78)

where p(r) is the nuclear density and po = p(r = 0), and for the nucleons

V(r) = =50 f(r),

1
0= =R ()

with R = 1.25 AY3 fm, a = 0.65 fm, which provides a fair reproduction of the
nuclear levels for the average energy of major shells, as well as realistic nucleon
wave functions.

In Ref. 40 one can find abundant results in different nuclei which are rather
realistic. Some details which have been omitted here, as the accurate description of
the energy balance in the particular reactions, transitions to the bound and con-
tinuum N states and the separation of the pion-nucleus optical potential imaginary
part into two terms related to pion absorption and quasielastic scattering?®) can be
found there.

In Fig. 33 we show the prediction of Ref. 40 for different nuclei and for 7% and
7~ decay, with plane waves and the renormalized pion wave function. The drastic
effects of the pion renormalization are seen there and are a bit smaller than in
former works because the energy balance makes the pions come out with smaller
energies than in the previous approaches and the attractive effects of the p-wave
part of the optical potential are then diminished. ;

Of particular relevance are the results in }2C. One obtains the results shown in
Table 2.

Although with large errors, the experimental results confirm these striking theo-
retical predictions which show a large violation of the AT = 1/2 in nuclei (I'yo /I~
should be 0.5 under this rule) due mostly to nuclear shell effects.

Another interesting finding is seen in very light nuclei. The mesonic width of § He
has attracted particular attention. There, in addition to the pion renormalization,
the repulsive character of the AN interaction and the relatively weaker medium
range attraction, compared to the NN interaction, has as an effect pushing the A to

28) In [40] pion quasielastic events are not removed from the pion flux, as it corresponds to
the actual experimental observation, while the use of a full distortion of the pion with the total
optical potential, as done in [44], inevitably removes the pion quasielastic events, together with
the pion absorption events. Though conceptually important, this refinement turns out to be of
little practical relevance in the present problem given the small energy that the pions carry and
the very small phase space for quasielastic collisions. However, other considerations, particularly
the energy balance in the reactions makes the widths in heavy nuclei for 7~ -decay about one
order of magnitude smaller than those of Ref. 44.
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Fig. 33. Pionic decay rate for #° and 7~ as a function of the mass number (of the host

nucleus, ‘60, *°Ca, %°Zr, *®Ba, and 208Pp), from Ref. 40. The two lower lines show the

calculation with plane waves for the pion and the two upper lines the results with pion
distorted waves.

Table 2.

Tpo/Ta I.— /T Tho/T,-
Ref. 40 0.159 0.086 1.86
Ref. 44 0.13 0.098 1.32
Exp. | 0.217 & 0.084 | 0.052 £2:33

the surface of the nucleus, weakening the Pauli blocking effect and thus enhancing
the mesonic decay [46]. The experimental numbers clearly favour potentials with a
repulsive AN core. One should note that such a repulsion automatically appears in
quark based models of the AN interaction. A recent study of the 5 He decay using
a quark model based hypernuclear wave function [47] leads to the results shown in

Table 3.

Table 3.
T /Ta Lo /T Tiot/Ta
Ref. 47 0.431 0.239 0.670
Exp. | 0.44 &+ 0.11 0.18 £+ 0.20 | 0.59 334

These theoretical results are also in good agreement with those of Ref. 48 when
a A wave function from the modified YNG AN interaction of Ref. 49, which has a
strong repulsion at short distances is used.
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6.2 Non-mesonic A decay in nuclei

Let us now turn our attention to the non mesonic decay. As we discussed above,
one gets this contribution when for instance in diagram (b) of Fig. 32 the interme-
diate nucleon and the p-h excitation are put on shell. However, note that in this
way, we would have only one pion exchange as responsible for the AN — NN tran-
sition. It is clear that we could have other ingredients as well, since now we have
exchange of virtual particles. Different approaches have been taken: 7+ p exchange
[50], pion exchange modified at short distances by new forces appearing when the
two quarks bags overlap [51], 7, p, K, K*, w, ... and short distance correlations AN
[62], ete. .

Furthermore, we can also have A decay induced by pairs of nucleons leading to
a three nucleon decay channel ANN — NNN [53].

3

°
e + M
- x NM
~ o TOTAL s
- 5 O/o/
— O
__—o
© <
X/
‘ b
i +\+‘_+\
" T h \* =
A He C O Ne Ca Ru Pb

Fig. 34. Mesonic and non mesonic A width as a function of the atomic number.

Thus, the subject is at the moment the object of an intense activity by several
groups and we will limit our discussion here to a qualitative level. We just mention
that the non-mesonic decay is the dominant mode for decay of A hypernuclei and
that it can be as large as twice the free decay width for heavy nuclei. To illustrate
this in Fig. 34, which should be considered merely at a qualitative level, we plot
the result for I'ys (pionic mode) and vy (non-mesonic mode) from Ref. 42 for
different nuclei, where we observe that for heavy nuclei I'/Itree, I’ = I'ng + I'ivas 18
around 2 and Iy decreases gradually as the atomic number increases.

7 Conclusions

We have studied different problems of Nuclear Physics, apparently disconnected,
but with a common link in their sensitivity to the spin-isospin part of the baryon-
baryon interaction and to the peculiar way that this interaction is modified in a
nuclear medium. We have reviewed the problem of the muon capture in nuclei, the
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nature and decay modes of ¥ and A hypernuclei and finally we have addressed
the main features of the pion-nucleus interaction at low energies. The framework
to deal with these problems has been Many Body Quantum Field Theory, which
proves to be an ideal method to calculate efficiently and reliably most nuclear
magnitudes, and which offers, through its diagramatic method, an intuitive picture
of the physical meaning of the magnitudes which are calculated.

Many other topics could have also been included, photo- and electro-nuclear re-
actions, scattering K*-nucleus, p annihilation in nuclei... with similar conclusions
and success, but for reasons of space have not been considered here.

I would like to acknowledge the essential contributions of most of my colleagues from
the group of Prof. E. Oset. In particular, I am in debt with E. Oset, C. Garcia-Recio,
M.J. Vicente-Vacas, H.C. Chiang, L.L. Salcedo, P. Fernidndez de Cofdoba and many oth-
ers... who have helped me to understand the techniques of Many Body Quantum Theory
and the main features of the different physical processes presented in these lectures. I
would also like to thank the Organizing Committee and in particular J. Adam and P. By-
dZovsky for all their dedication, support and help during the celebration of this School.
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