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Parameter Space

Only ADMX has reached the model band to date.

The parameter space is mostly unexplored, especially at high
frequencies.
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The cavity search at high frequencies

Challenges

At constant coupling,
dν
dt
∼ ν−14/3

for resonator geometries used in axion searches to date

Largely due to small volume of high-frequency resonators

Standard Quantum Limit (SQL): kTS ≥ hν for linear amplifiers

The Silver Lining

Cryogenics much simpler at 5 cm scale than 50 cm scale

Josephson parametric amplifiers (JPAs): tunable amplifiers in the
2-12 GHz range which can approach quantum noise limits
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Detector Design

A data pathfinder and innovation testbed for the high-mass region

Ben Brubaker (Yale) High-mass cavity results LLNL Axions 2017 6 / 30



Cavity and Motion Control

Tuning via rotation of
off-axis Cu rod

Linear drives for
dielectric fine tuning
and antenna insertion

∼ annular geometry:
maximizes V for
TM010-like mode at
given ν

Q0 ∼ 3× 104, C010 ∼ 0.5
in initial operating range
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Josephson Parametric Amplifier

An LC circuit with nonlinear SQUID inductance⇒ parametric gain
from a strong pump tone applied near resonance.

Analogous to modulating your center of mass at 2ω0 on a swing
(figure from arXiv 1103.0835): defines a preferred phase

Signals detuned from the pump are superpositions of amplified and
squeezed quadratures⇒ both direct and intermodulation gain

Added noise is just thermal noise of the “idler mode” from opposite
side of pump
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JPA Biasing and Tuning

Apply DC magnetic flux to tune LC resonance
from 4.4 to 6.5 GHz

Bias up to ∼ 21 dB gain by varying pump
power Pp and detuning ∆ between pump
frequency and LC resonance

In practice: want to keep ωP at fixed detuning
from cavity – use flux to adjust bias point

Bucking coil, Pb/Nb/Cryoperm shields, and
passive NbTi coils for ∼ 108 net reduction of
field on JPA
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JPA Biasing and Tuning
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Noise calibration principle

kTS = hν
(

1
ehν/kT − 1

+
1
2

+ NA

)

Linear detection: ≥ 1/2 photon at the input of any linear amplifier,
because quadrature amplitudes don’t commute with Hamiltonian.

The Standard Quantum Limit: A phase-insensitive linear amplifier
must add noise NA ≥ 1/2, because quadrature amplitudes don’t
commute with each other.

Measure NA using blackbody source at known temperature (the
Y-factor method) – includes JPA added noise, HEMT added noise
and loss before JPA.

Y =
PHot

PCold
=

GH [NH + NA (NH)]

GC [NC + NA (NC)]
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Noise calibration results

We measure NA ≈ 1.35
⇒ TS ≈ 550 mK off
resonance

Total noise increases to
TS ≈ 3hν ≈ 830 mK on
resonance

Off-resonance noise consistent with 20% thermal contribution,
∼ 0.2 quanta from HEMT, ∼ 0.5 quanta from ∼ 2 dB loss before JPA

Temperature- and gain-dependence of resonant noise bump
implicates thermal link to tuning rod
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Timeline

4/2012 − 6/2014: Design/construction

7/2014 − 1/2016: Integration/commissioning
I Eliminated vibrationally coupled JPA gain fluctuations by operating at

125 mK
I Added analog flux feedback system to stabilize JPA gain
I Implemented blind injection of synthetic axion signals

1/26/2016 − 9/1/2016: Operations
I 3.5 months of automated data acquisition: ∼ 7000 15-minute

integrations covering 5.7 − 5.8 GHz
I Campus-wide power outage on 3/7/2016 led to magnet quench:

2 months downtime for repairs
I 28 candidate frequencies from final analysis: rescanned 8/2016
I We did not find the axion!
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Magnet Quench

500 kJ dissipated over a few
seconds; warping due to eddy
current forces
Helium circulation lines
unharmed!
Shields rebuilt w/ less copper.
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Analysis Procedure

Based on Asztalos et al. PRD (2001) w/ various refinements: fit out
spectral baselines, construct maximum-likelihood-weighted sum of
overlapping subspectra.
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Analysis Procedure

Set 3.46σ threshold on power excess within ∼ 5 kHz, rescan
candidate frequencies to check for coincidences
Innovations:

I Optimal Savitzky-Golay fitting of subspectra
I Maximum-likelihood weighting for both subspectra and adjacent bins
I Confidence levels from statistics rather than Monte Carlo
I Taking into account all possible loss factors not directly measured
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Results

2.3 × KSVZ over 100 MHz a decade higher in mass than ADMX.

Coverage will be extended to a few GHz over the next few years.

Now an operational platform for tests of new cavity and amplifier
concepts!
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Recent Progress – Piezo tuning

Repeatable stepping with 45 V on Attocube ANR240
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Recent Progress – Rod thermal link
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Recent Progress – Rod thermal link
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Recent Progress – Rod thermal link
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What’s Next?

Now: double coverage at 150% initial
scan rate

Transfer experiment to new BlueFors
dil fridge: more stable, reduced
vibrations⇒ colder

JPA/cavity fabrication to extend
frequency range

R&D for next-generation searches:
I Squeezed state receiver (CU) – to be

installed in 2017
I New cavity concepts: PGBs, DBRs,

superconducting thin films (UCB)
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Further reading and acknowledgments

“First results from a microwave cavity at 24 micro-eV,”
B. M. Brubaker et al., arXiv:1610.02580 (to be published in PRL,
designated an “Editors’ Suggestion”).

“Design and operational experience of a microwave cavity axion
detector for the 20 − 100 µeV Range,” S. Al Kenany et al.,
arXiv:1611.07123 (submitted to NIM A).

Detailed analysis paper coming soon!
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Extra Slides
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Signal Power and Scan Rate
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Microwave Layout

3 paths for injection into
fridge: transmission,
reflection, JPA pump.

Cryo microwave switch
(Radiall) and terminator at
still plate for Y-factor
measurement.

Second-stage amplifier:
LNF LNC4_8A: TN ≈ 4 K.
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Microwave Layout
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GaGe Oscar CSE4344 ADC: 14 bits,
25 MS/s sampling.

Agilent E5071C VNA for cavity and
JPA measurements.

Keysight N5183B (w/ white noise at
FM input) for fake axion injection.

JPA flux bias: 20-bit ADC w/ 1 µV
resolution and 1 mA/V current source.

Flux feedback system (in pink).
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Squeezed states for axion detection

JPAs can operate in a mode where they
amplify one signal quadrature and
squeeze the other: no SQL

If we align the squeezed quadrature of
one JPA with the amplified quadrature of
another, no 1/2 photon from linear
detection either: kTS � hν!

Cavity must be overcoupled; squeezed
state injected in reflection. Works due to
finite axion coherence time ∼ 200 µs.

Eliminating loss before JPA is a challenge.

See H. Zheng et al., arXiv:1607.02529
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DAQ procedure

Noise is mixed down to MHz and digitized at 25 MS/s for t ∼ 15 min.

In-situ FFT computation, image rejection, and averaging of power
spectra with 100 Hz resolution.

Step resonance by ∼ ∆νc/4 and repeat O
(
104

)
times.

At each step, we measure QL and β and rebias JPA.

Noise calibrations interleaved into the axion search (every 10
iterations).

Data rate ∼ 20 GB/100 MHz (500 TB/100 MHz to save full time
series data).
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IF configuration
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Allan Variance Measurement

Noise decreases as τ−1/2 out to at least 24 hours.
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Histograms

Real data:

Simulation:
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Synthetic axion injection
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Cavity Tuning
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