

Decay Ring Design for Long Baseline NF a la NuMAX

J. Pasternak, IC London/STFC-RAL-ISIS

D. Kelliher, STFC-RAL-ASTeC

- Introduction
- IDS-NF decay ring
- FDDF ring for NuMax
- FODO ring for NuMax
- Injection considerations
- Neutrino flux calculations
- NuMax/nuSTORM comparison
- Conclusions and future plans

Introduction

Imperial College London

IDS-NF

We looked at a possible design of the NuMAX decay ring using the IDS-NF decay ring design as a starting point,

IDS-NF Decay Ring

Imperial College London

- •Key assumption for IDS-NF is the need to accommodate 3+3 bunches.
- This makes the injection into the production straight impossible due to the kicker magnet limitations (rise/fall time) and requires a dedicated insertion.
- We have found a solution, however it pushes the ring circumference.

	••••••	On o market
Production straight	562.0×2	m
Upper arc (incl. disp supp)	121.155	m
Lower arc	112.729	m
Insertion	46.4×2	m
Matching sections (total)	104.987	m
Circumference	1555.672	m
Width of ring	74.565	m
Length of ring	737.228	m
Angle of inclination	10	deg
Maximum depth of ring	128.02	m
Production efficiency η_p	$36.1\% \times 2$	
Total tune (H,V)	14.77, 13.73	
Chromaticity (H,V)	-17.11, -20.23	
Phase slip η	2.8×10^{-3}	
Turns per mean lifetime	40.07	

 β_{k} (m), β_{r} (m)

Imperial College London

IDS-NF ring (optics and dynamics)

You can see the limitations from the integer and half-integer resonances, however it is good enough for the IDS-NF beam!

IDS-NF vs NuMAX

	IDS-NF	NuMAX
Muon energy [GeV]	10	5
Number of bunch pairs	3	1
Bunch train [µs]	250	~170
Normalised acceptance [pi mm rad]	30	20
Ring inclination	10°	5.8°

Imperial College London

Design considerations

Design Aims

Maximize neutrino production efficiency (η)

Low beam divergence in production straight ($<0.1/\gamma$)

Maintain bunch separation (100 ns)

Allow realistic injection scheme

Ensure reasonable momentum acceptance

Beam divergence in production straight

- Want to keep beam divergence << natural decay cone of neutrinos
- Imposes a minimum beta in the production straight

$$x' = \sqrt{\frac{\varepsilon_{rms}}{(\beta_r \gamma_r)\beta}} < \frac{0.1}{\gamma_r} \implies \beta \propto \gamma_r$$

$$\varepsilon_{rms} = 5.7 \, \pi \, \text{m} \, \text{rad} \, \text{(approximately)} \, \text{implies } \beta > 25 \, \text{m}$$

Lattice overview (FDDF in the production straight)

Section		Cell No.	Total length (m)
Production	21 m (cell length)	10	210x2
Matching	-	-	18.7x4
Arc	4.34 m (cell length)	10	43.41x2
Ring	-	-	581.62
Dipole field	2.4 T		
η	2x36.1%		
transition gamma	6.83		
Ring tune (Qx, Qy)	5.4, 6.13 (needs readjusting		
Chromaticity (ξx, ξy)	-5.1, - 6.1		

FDDF optics

Imperial College London

Production Straight (FDDF)

- FDDF lattice adopted for symmetric injection
- Drift length chosen to reduce variation of beta but allow space for injection elements

	Length	Field/Gradi ent
Drift	5 m	-
QF	2.0 m	0.65 T/m
QD	2.0 m	0.33 T/m
Beam envelope in quads	14.4 cm	-

Injection

- FDDF allows for symmetric injection of both muon charges.
- Length of the straight section is 5 m.
- •Single kicker scenario requires 0.14 T top B field (kicker) -> too much, but distributed kickers may work. Assumed kicker length 3.8 m (fall time 1.76 μ s)
- Septum 1.67 T, 1m long

Lattice overview (FODO in the production straight)

Section		Cell No.	Total length (m)
Production	18 m (cell length)	9	162x2
Matching	-	-	18.7x4
Arc	4.34 m (cell length)	8	34.7x2
Ring	-	-	468.2
Dipole field	3 T		
η	2x34.6%		
transition gamma	6.33		
Ring tune (Qx, Qy)	4.65, 5.7 (needs readjusting)		

Imperial College London

Preliminary NuMax ring with FODO production straight

Imperial College

Cells of the ring London with FODO-type production straight

- 8 m drift
- Room temperature quads
- •Large β
- Zero dispersion

Arc cell:

- Very short drifts
- All magnets SC in the common cryostat.

Dipole field 3 T.

- •Small β
- Non-zero, but small dispersion

FODO injection

- Kickers and septa in consecutive cells.
- 6.8 m kicker with 0.09 T peak field
- 3 m septum with 0.4 and 0.2 T.
- Higher kicker field needed when injecting through the F than the D.
- In the FDDF case, the kicker peak field required is 0.14 T.

Imperial College London

Alternative injection into the FODO ring

- This scheme assumes one empty drift between the kicker and septum
- Kicker approximate parameters:
 - 6.4 m long, subdivided into sub-kickers.
 - 0.05 T top B field
 - Rise/fall time ~1.4 us
 - Aperture ~0.35 m
- Septum 1.2T, 3m long
- This scheme requires confirmation!

FODO vs FDDF production straight

- FDDF considered as it allows symmetric injection of both muon signs.
- However, longer straights possible in FODO easing the peak field kicker requirement.

	Length (m)	Gradient
Drift	8	-
QF	1	1.03 T/m
QD	1	-1.03 T/m

	Length (m)	Gradient
Drift	5	-
QF	2	0.65 T/m
QD	2	-0.33 T/m

NuMAX neutrino flux studies (1)

Near detector: 50m distance, 5m diameter.
 Results for 1000000 stored muons.

NuMAX neutrino flux studies (2)

Near detector: 50m distance, 5m diameter.
 Results for 1000000 stored muons.

nuSTORM/NuMAX Global Parameters

≈0.35 km

Accelerators: Single-Pass Linacs (Opt. RLA or FFAG)

	nuSTORM	NuMax
Muon Total Energy [GeV]	3.8	5
Bρ [Tm]	12.675	16.674
Geometrical acceptance $[\pi.mm.mrad]$	3000	423
Tilt angle [degree]	0-1	5.8
Momentum acceptance	±9(16)%	±6.3%
Long baseline length [km]	2	1400
Injection type	Stochastic	Full aperture with kicker

Comparison Lon (for fraction of parameters)

	nuSTORM-FODO	nuSTORM-RFFG	NuMax
Circumference [m]	480.3	500	468.2 (582)
Dipole B field [m]	4.14	3 (in combined f. mag.)	3
Dipole total aperture HxV [m]	~0.3x~0.27	~0.96x~0.56 (in c.f.m.)	~0.42x0.13
Production straight magnet aperture [m]	~0.6	~0.6 m	~0.35

Common technologies/elements for NuMax and nuSTORM

- SC magnets with large aperture
 - We know we can make them
 - ...but we want to make them efficiently
 - -> We want magnets with large aperture (including combined function ones -> nuSTORM FFAG option)
- Large aperture room temperature quads (or FFAG-type -> for nuSTORM FFAG option)
- Pion/muon beam instrumentation
 - To measure orbit, beam size, current, tune.
- Beam instrumentation for the neutrino beam monitoring
 - To measure divergence
 - To monitor beam energy

Conclusions

- As NuMax design assumes only 1 bunch/charge, the ring size can be reduced.
- We have two preliminary designs of 581.6 and 468.2 m.
- In both rings production straight and matching can be based on room temperature magnets, but arcs need SC ones.
- Injecting directly into the production straight avoids the need for the dedicated insertion (like in the IDS-NF), which allows to makes the ring smaller.
- Limitation for the size of the ring is again fall time of the kicker.
- A large aperture kicker(s) with modest strength is(are) required, which seems to be feasible (to be confirmed).
- Large aperture quads are needed at injection region.

Future plans

- Design update
 - Ring optics
 - Injection scheme confirmation
 - Injection line layout/optics
- Tracking studies
 - Using realistic field models
 - Including errors
- Neutrino flux studies -> to motivate neutrino physicists more...

We aim to finalise these goals this September!

Longer term R&D Goals

- Large aperture SC magnets
- Large aperture room temperature magnets
- Muon beam instrumentation
- Beam instrumentation for the neutrino beam monitoring