ParticleBomb: a model independent event generator

Andy Furmanski Sim meeting Feb 21 2017

Model dependency

- A common discussion within the neutrino xsec community:
 - How model-dependent is this measurement?
 - Oh, it's completely model-independent
 - So how do you estimate the efficiency?
 - Oh, we use MC with the default GENIE model
 - so your data depends on the GENIE model...
- One problem is that GENIE only produces events in parts of phase space that GENIE wants to
 - Different models can cover different phase-spaces
 - What if nature fills some part of phase space that no generator does?

Andy Furmanski

But what can we do about it?

- Instead of relying on GENIE's predictions, just put events everywhere in the phase space you care about!
- Use a particle bomb
 - Like a particle gun, but with more than one particle...
- SingleGen currently can generate multiple particles, but their locations are either:
 - all random within an event
 - fixed event-to-event

Task #1

- Modify SingleGen to be able to generate multiple particles all in a single, random location
- new fcl parameter SingleVertex: true
- If set to true, it selects a location first, then picks particle kinematics for each particle individually
- I believe this is a non-breaking change

Did I do it right?

Generated 10k mu+p events in uBooNE

- Plots look the same for y and z positions
- I seem to be generating pairs of particles in a single, random location

Awesome, sounds perfect!

- It's not.
- Statistics will become your enemy. Quickly
- You have to be a bit smart about it.
 - This is up to each analyser to do
 - But, for example, how much do you care about the proton efficiency for a 4GeV/c proton?
 - So maybe you don't need so many events produced over there?
- Useful idea:
 - Generate events according to input histogram distributions
 - Decouple angle, momentum, multiplicity, etc
 - But stick to "realistic" areas of phase space, and weight according to how much you care

I need an example!

 GENIE couples muon angle and momentum implicitly:

 But if we take away the correlation:

Task #2

- Modify SingleGen to accept input histograms for particle momenta/angles
- Simply set Pdist and AngleDist to 2
- fcl parameters:
 - HistogramFile: "filename.root"
 - Phist: ["h_muonmom", "h_protonmom"]
 - ThetaXzYzHist: ["h_muonangle","h_protonangle"]
- Just need a file with histograms in
- Can re-use histograms for multiple particles

Note – the angular histogram is a 2D histogram in thetaxz ,thetayz

And did I do this one right?

- 10k muon+proton events generated
- Simple toy input histograms SetBinContent(i, i)
 - i.e. linearly increasing
- Generated events match input histograms

Wait, I want to vary my multiplicity!

- I didn't implement a multiplicity variation
 - Mainly because it's slightly more complex
 - Also because of the statistics problem
 - Phase space just grows and grows
- My (Wes's) solution:
 - Use a histogram with a large bin at 0
 - 0 momentum particles won't get tracked by G4
 - Therefore the multiplicity will be less at random
- Alternative solution
 - Think about the exact topologies you care about, and produce separate samples

Conclusions

- I have changes available for larsim, that enable 2 things:
 - Producing multiple particles in a single, random location
 - Selecting momenta and angles from input histograms
- I believe this is all non-breaking
- This is potentially useful, but analysers still need to think carefully about the statistics available
 - Most useful when restricting yourself to a specific topology
- Code is ready to merge

