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This talk outlines the changes proposed for larpandoracontent v03_07_00:

- Eigen dependency added and dealt with in build tools 

- 2D/3D sliding linear fits now use Eigen to determine coordinate system 

- Shower direction convention updated so that principal axis points away from the 
vertex 

- PcaShowerParticleBuilding algorithm moved from larpandora to larpandoracontent  

- LArCaloHit object added to hold track, shower, other and Michel classification 
probabilities 

- Added an algorithm for an SVM-based approach to vertex selection using the SVM 
interface added in v03_05_00 

- Added an algorithm for SVM-based track/shower ID 

- SVM data files located from FW_SEARCH_PATH using cet::search_path functionality

The changes are in feature branches named ‘feature/larpandoracontent_v03_07_00’ in 
larpandoracontent, larpandora, uboonecode, uboonedata and dunetpc
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• Eigen is a header-only C++ library for linear algebra, facilitating e.g. PCA

• 2D and 3D sliding linear fit objects in Pandora need to determine a coordinate system 
against which to describe the fit

• Extremal points of the Cluster were previously used to determine this axis, which usually 
form a good basis

• A bad choice of axis can lead to a poor fit: 

‣ The Cluster position could be effectively multivalued on a bad projection

‣ Traversing small distances across the fit can project to large changes along the Cluster, 
so accuracy is lost

• To improve quality of the coordinate system, Eigen can be used to determine the principal 
axis instead

• An Eigen dependency has been added to larpandoracontent 

• Changes to build mechanics are working nicely – fairly minimal since Eigen is header-only
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• PcaShowerParticleBuilding algorithm already depended on Eigen so had been housed in 
larpandora rather than larpandoracontent to avoid this dependency

• The dependency has been adopted and this algorithm has now been moved to 
larpandoracontent

• The chosen shower axis direction was following Eigen’s default axis direction convention 
(low x to high x if not single-valued in x; else low y to high y etc)

• Analysers didn’t like this convention – so this has been altered such that the direction of 
the axis always points away from the shower vertex

• We assume that the reco centroid is farther from the start of the shower than the vertex
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• A new object, lar_content::LArCaloHit, has been added that endows pandora::CaloHit 
objects with normalised track-like, shower-like, or none/other probabilities – plus a Michel-
like probability

• The probabilities are set during instantiation of the LArCaloHit object and can then be used 
for pattern recognition. By down casting CaloHits to LArCaloHits, we can access these 
additional properties

• This change facilitates the ongoing development of Hit-level track/shower/other(/Michel) ID, 
in collaboration with Robert and Dorota



LArSoft Coordination Meeting

Pandora SVM framework

6

• SVM framework was added In larpandoracontent v03_05_00 to generalise the treatment of 
SVMs in the now-complete SVM vertex selection algorithm 

• This comprises two parts:

‣ LArSupportVectorMachine object: provides the fundamental mechanics 

‣ LArSvmHelper class: automates some low-level work to facilitate high-level usage 

• The framework allows already-trained SVMs to be used inside Pandora to make binary 
classification decisions

• Training of the SVMs must be done using an external package – but mechanics for producing 
training sets in the right format is provided

• The trained SVMs take the form of an XML document with a set of parameters, such as the 
type of kernel to use and the number of features, followed by an arbitrarily long list of 
support vectors with the same dimensionality as the feature space
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• The LArSupportVectorMachine object provides the mechanics for initialising the SVM from 
the XML data file, extracting properties of the initialised SVM, asking for/defining the kernel 
function and performing classification 

• Contents of the data file and the state of the SVM are checked for consistency and an 
exception is raised if there is an issue:

‣ Number of features

‣ Size of support vectors

‣ Whether the SVM has been initialised before usage

‣ Sizes of the mu/sigma vectors, used to standardise the data if necessary

• The object is designed with performance in mind, so C++11 move semantics have been taken 
advantage of and further analysis of the performance is going to be performed in the near 
future

• Common kernels (linear, quadratic, cubic, Gaussian RBF) are provided and can be set via an 
enum, or a custom kernel can be defined by passing a function pointer or using a lambda 
function
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• Declared alongside the SVM object is an abstract class template called SVMFeatureTool, 
which inherits from AlgorithmTool

• SVMFeatureTool is an AlgorithmTool with a virtual ‘Run’ method: 

‣ First argument is a vector of doubles (the vector of features to be appended by the 
tool)

‣ Remaining arguments are a variadic list of arguments to be passed to the method, 
templated at the class-level

• The idea is that each algorithm has a set of features, calculated by a set of SVMFeatureTools, 
all templated on the same input variables – then we can recast the tools and exploit the 
polymorphism in useful ways

• SvmFeatureTools can be configured from at the setting file level in the same way as 
AlgorithmTools, allowing different features and different numbers of features to be used 
without recompilation

• Each feature tool can calculate an arbitrary number of features and append them to the 
vector – feature dimensionality checking is then performed by the SVM
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• The LArSvmHelper provides a number of static methods for facilitating the high-level use of 
the LArSupportVectorMachine object 

• This includes wrapper methods around the classification functionality, allowing variadic lists 
of features to be automatically concatenated before being passed to the SVM – this is useful 
since some features may be calculated via feature tools, some by feature tools of different 
templating, and simpler ones by the algorithm itself

• Functionality is provided for initializing the list of feature tools from the AlgorithmTool 
pointers in the algorithms’ ReadSettings methods

• The ProduceTrainingExample method appends lists of features to a designated file in a 
standard format for training an SVM

• Finally, there are methods for calculating and returning lists of features, given the vector of 
upcast SvmFeatureTools and the input arguments, which are common to the feature tools by 
design

• The helper class relies fairly heavily on method templating and implements compile-time 
type-checking via static_asserts where possible
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• Each SVM decision made in Pandora requires a data file that parametrises the SVM

• These files are typically ~a few MB in size

‣ e.g. SvmVertexSelection algorithm’s data file is 7.0MB and comprises two SVMs

• The data files are specific not only to the problem but also to the input data, so we require 
separate data files for e.g. MCC7/MCC8, as well as different files for MicroBooNE/DUNE

• As per email discussion, the MicroBooNE SVM data files will live in uboonedata product, 
(uboonedata/PandoraData) and similarly in dune_pardata for DUNE

• Within the SVM-based algorithms, the data files are then located using the cet::search_path 
functionality
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• Vertexing in Pandora occurs at the 2D stage of the reconstruction and consists of 2 parts:

‣ Candidate creation: features of the 2D clusters are used to create a large number of 
3D candidate vertices

‣ Vertex selection: the vertices are scored, based on a number of variables, and the 
highest-scoring one is chosen

• The previously-available vertex selection algorithms were the EnergyKick and HitAngle 
algorithms

• To combine multiple scores, e.g. beam deweighting, energy kick and asymmetry in the 
EnergyKick algorithm, we create a probability-like quantity for each and take their product to 
make a final ‘probability’, with some parameters to be manually tuned 
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From DocDB 6753-v1

• HA uses the r/phi distribution of the Hits in the vicinity of a candidate to make a score

• EK uses the transverse component of each cluster energy wrt the vertex candidate to work 
out the size of the energy ‘kick’ required – plus an asymmetry score to suppress candidates 
that split clear tracks

• Both algs use the ‘beam deweighting score’ to favour upstream candidates
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From DocDB 6753-v1
(MCCheating = cheated vertex, not just cheated selection > achievable ceiling here)
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• Meaningfully combining the scores becomes difficult as the score components become more 
codependent and when different topologies prefer different tunes

• These score components abstract an apt feature space but turning a position in the feature 
space into a scalar score is difficult – ML can help us here

• SVMs are trained binary classifiers (see backup slides for further description)

• To phrase the problem as binary classification, we train the SVM (details later) to decide 
which of two vertices is better (using MC information), given a set of features.

• We split the problem into vertex-region-finding and vertex-finding, since the problems are 
quite different – yields a performance benefit
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• Features are based on those used for vertex selection in previous algorithms, plus some 
event-based features that allow for different topologies to be treated differently

• Simple distance-based shower-like 2D Cluster clustering is used to provide info about 
candidates splitting showers

• Region-finding SVM: 

‣ Vertex-based features: energy kick, beam deweighting, global asymmetry, local 
asymmetry, shower asymmetry

‣ Event-based features: event showeryness (proportion of showery-cluster-associated 
Hits), total energy, volume spanned, longitudinality, number of Hits, number of Clusters, 
number of vertex candidates

• Vertex-finding SVM: 

[same as above plus the vertex-based r/phi feature]
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Region SVM 

• Use a method similar to the EK alg to score all the vertices

• Run down the list of vertices and pick every vertex that is >10cm separated from 
every other chosen vertex, to define disjoint spherical regions of radius 10cm

• Use the MC information to get the best region (and skip this event if the best region 
isn’t within 10cm of the true vertex)

• Produce the feature sets for all the regions

• For each incorrect region, add a training example comprising the feature set of the 
correct region and the feature set of the incorrect region, with a 50% probability of 
each ordering – then class ‘true’ means the better region was in the first position

Vertex SVM 

• Same as the above, except now looking at all the vertices in the correct region and 
comparing them with the best vertex

We train the SVMs using the sklearn Python package with a Gaussian radial basis function 
kernel, then package the support vectors and other parameters as an XML file to be read by 
Pandora
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• A new algorithm has been added for performing track/shower ID for use by analyzers

• The algorithm uses the same SVM mechanics to perform binary classification on PFOs, based 
on a number of features

• The mechanics of using and manipulating the SVM object, as well as producing training sets, 
for this problem is the same as for the vertexing – all abstracted by the SVM object and 
associated helper class

• The main difference between these problems is in the judicious choice of features

• Training sets currently produced for MicroBooNE – to be studied for use in DUNE in the 
future
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Track/Shower ID features
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• The changes are in feature branches named ‘feature/larpandoracontent_v03_07_00’ in 
larpandoracontent, larpandora, uboonecode, uboonedata and dunetpc

• Branches are complete and have been tested
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Backup slides
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• Some very detailed notes:

http://cs229.stanford.edu/notes/cs229-notes3.pdf

• Some easier slides:

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

• scikit-learn SVM description and examples:

http://scikit-learn.org/stable/modules/svm.html

• scikit-learn SVM documentation:

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html 

http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Sliding fits graphically
SlidingLinearFits

Perform a linear fit taking into account the 
positions of hits in a (sliding) fit window
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SlidingShowerFit
Perform two sliding linear fits, on 

positive and negative cluster edges

Local coordinates: 
L and T

Straight line: 
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hits in the fit
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Framework development

LAr TPC algorithm 
development

Performance metrics and 
validation

John Marshall (marshall@hep.phy.cam.ac.uk) 
Mark Thomson (thomson@hep.phy.cam.ac.uk)

John Marshall  
Andy Blake (a.blake@lancaster.ac.uk)

John Marshall  
Andy Blake  
Lorena Escudero (escudero@hep.phy.cam.ac.uk) 
Joris Jan de Vries (jjd49@hep.phy.cam.ac.uk) 
Jack Anthony (anthony@hep.phy.cam.ac.uk)

Please visit https://github.com/PandoraPFA

Pandora is an open project and new contributors would be extremely welcome. 
We’d love to hear from you and we will always try to answer your questions!

Contact details:

mailto:marshall@hep.phy.cam.ac.uk
mailto:thomson@hep.phy.cam.ac.uk
mailto:a.blake@lancaster.ac.uk
mailto:escudero@hep.phy.cam.ac.uk?subject=
mailto:jjd49@hep.phy.cam.ac.uk
mailto:anthony@hep.phy.cam.ac.uk
https://github.com/PandoraPFA

