

## Vacuum rf 6D Cooling

R. B. Palmer (FNAL)

Wednesday 9/18/2013

## **Specification**

- Input: from end of Neuffer phase rotation (without 4D cooling)
- ullet Output:  $\epsilon_{\parallel} = 1.5$  mm, and  $\epsilon_{\perp} = 0.32$  mm.
- Components: Charge separator, Rectilinear 6D, 6D merge, further Rectilinear 6D



## **Priorities**

- 1. Confirm simulation of Phase rotation and fix output files
- 2. Confirm simulation of Cary's charge separator and fix output files
- 3. Fix and simulate Valeri's and/or Diktys' 6D cooling systems
  - Simulate Valeri's using output from Cary and a standard code
  - Break Valeri's into before and after merge systems
  - Add final stage to Valeri's, using HTS, to 0.32 mm transverse
- 4. Choice of Rectilinear RFOFO lattices
- 5. Complete design and G4BL simulation of 6D bunch merge
- 6. Do end-end simulation
- 7. Start study of engineering: absorbers, rf, magnets, supports, thermal insulation.
- 8. Consideration of Snakes and other 6D cooling systems that might offer advantages; eg cooling both signs