

Cooling Status

Diktys Stratakis

Brookhaven National Laboratory

Vacuum RF Meeting 3 May 13, 2014

VCC Workshop Procedure

- Day 1: Tuesday, 9 am to 6 pm
- Day 2: Wednesday, 9 am to noon.
- Visit to Materion at 2 pm on Wednesday
- Three working groups:
 - Lattice design group
 - Magnet group
 - RF group
- Meet at regular intervals to discuss progress (11am, 3 pm, 5 pm).
- Summaries are due the morning of Day 2

Vacuum RF Cooling Channel

Concept: Generate dispersion and cool via emittance exchange in a wedge absorber

<u>Proposed solution:</u> Rectilinear channel with tilted alternating solenoids and wedge absorbers

Tapered channel: The focusing field becomes progressively stronger to reduce the equilibrium emittance.

Overall performance

Cooling before merging (4 stages)

STAGE 1 132 m (66 cells) STAGE 2 171.6 m (130 cells) STAGE 3 107 m (107 cells) STAGE 4 70.4 m (88 cells)

MAGNETIC FIELD

axis (coil)

Cooling after merging (8 stages)

STAGE 4 62.5 m (50 cells) 62 m (77 cells)

STAGE 6

STAGE 8 41.1 m (51 cells)

3.7 T (8.4 T)

6.0 T (9.2 T) 10.8 T (14.2 T) 13.6 T (15.0 T)

MAGNETIC FIELD

axis (coil)

Concept for magnet design (Stg. 8)

- Middle, outer: Nb-Ti

Viable?

0.6

8.0

Concept for cryostats

- Space created by omitting absorbers or some rf cavities
- Space generated can be used to separate cryostats or add diagnostics

Viable?

Concept for Be Windows

Channel before merge, ONLY!

Stage	f (MHz)	rWin (cm)	rStep (cm)	t0 (mm)	t1 (mm)
1	325	30	16	0.3	1.4
2	325	25	15	0.2	0.8
3	650	19	10	0.2	0.6
4	650	13.2	11.4	0.125	0.38

Stepped Be window: All stages have two steps.

Viable?

Concept for LH absorbers

Replace liquid hydrogen (LH) absorber wedges with cylindrical absorbers.
Viable?

10

Questions to the RF Group

- Operation of RF at 77 K. Power requirements?
- Space needed between rf & coil?
- Is it ok if waveguide connects to rf not from the center?
- Maximum length of cryostat?
- Missing cell configuration by removing rf is feasible?
- RF length: 24 cm (325 MHz), 12 cm (650 MHz) ok?
- Space between cavities? waveguide thickness?
- Integration of Be windows into cavity (Materion)
 - Two step graded rf windows (Slide 8). Feasible?
 - Stage 1 need a 30 cm radius window. Feasible?
 - Last stage has 4.5 cm. Minimum Be thickness?

Questions to the magnet group

- Space for wire feed in/ out enough?
- Waveguides interfere with coils. Feasible?
- Space needed between individual coils?
- Magnet tolerances to errors.
- Dipole field vs. coil tilt?
- More details in Holger's talk

Appendix

Lattice parameters

Parameters	Stage 1	Stage 2	Stage 3	Stage 4	
Coil tilt (deg.)	3.13	1.80	1.60	0.70	
Current density (A/mm²)	63.25	126.6	165.0	195.0	
Max B on coil (T)	4.20	8.47	9.56	11.83	
Max B on axis (T)	2.35	3.50	4.82	6.06	
Trans. beta (cm)	81.9	54.8	38.3	30.3	
Absorber angle (deg.)	40	44	100	110	
Absorber type	LH ₂	LH ₂	LH ₂	LH ₂	
Rf frequency (MHz)	325	325	650	650	
RF gradient (MV/m)	22	22	28	30	
Ref. Momentum (MeV/c)	220	215	212	210	
Cell length (m)	2.0	1.32	1.0	0.8	
Total length (m)	132	171.6	107	70.4	

Lattice parameters

Parameters	St. 1	St. 2	St. 3	St. 4	St. 5	St. 6	St. 7	St. 8
Coil tilt (deg.)	0.9	1.3	1.1	1.1	0.66	0.7	0.8	8.0
Cur. Density (A/mm²)	69.8	90.0	123.0	94.0	168.1	185.0	198.0	198.
Max B on coil (T)	6.8	8.4	12.2	9.2	14.1	14.2	14.20	15.0
Max B on axis (T)	2.6	3.70	4.9	6.0	9.8	10.8	12.50	13.6
Trans. beta (cm)	42.0	27.4	20.2	14.0	8.1	5.9	4.2	3.7
Wedge ang. (deg.)	120	117	113	124	61	90	90	90
Absorber type	LH ₂	LH ₂	LH ₂	LH ₂	LiH	LiH	LiH	LiH
Rf freq. (MHz)	325	325	325	325	650	650	650	650
RF grad. (MV/m)	19.0	19.5	21.0	22.0	27.0	28.5	26.0	26.0
Cell length (m)	2.75	2.00	1.50	1.27	0.806	0.806	0.806	0.806
Total length (m)	55.0	64.0	81.0	63.5	73.3	62.0	40.3	41.1