
Discussion input for future ROOT
functionality/features.

Peter van Gemmeren, Marcin Nowak
for the ATLAS I/O team

• Interface separation of ROOT I/O

• Dynamic structure creation to minimize ROOT
branch count

Event Data Streaming

• ATLAS is developing Shared Reader/Writer
framework for AthenaMP (and others):

– Worker nodes will not access ROOT file directly.

• Avoid having multiple worker read (and decompress)
same data (because their events are in the same ROOT
cluster).

• Save memory (e.g. TTreeCache).

– Has to work with fine granularity dispatching
(EventServer).

• Single events for Simulation

Prototype Implementation

• The (Gaudi-style/ROOT independent)
ConversionSvc is configured so that when
object is requested from worker’s store, it
sends a message to a Shared Reader.

• The Shared Reader uses its ConversionSvc to
read the object (via POOL/APR and ROOT) and
sends it back via shared memory to the
worker.

Serialization Service:
(e.g.) ROOT

Shared Memory

ROOT

Okay

Worker
Object

Request object via Token

Read

Reader

TBranch

ROOT
Reading:
Disk I/O

De-compress
De-serialize

Copy Object
to Shared
Memory:
Serialize

Copy Object
out Shared
Memory:

De-serialize

Object

branch->SetAddress()
branch->GetEntry()

Serialization Service:
(e.g.) ROOT

Shared Memory

ROOT

Better

Worker
Object

Request object via Token

Read

Reader

TBranch

ROOT
Reading:
Disk I/O

De-compress
De-serialize

Copy Object
to Shared
Memory:
Serialize

Copy Object
out Shared
Memory:

De-serialize

Object

branch->SetAddress()
branch->GetEntry()

branch-
>SetBufferAddress ()
branch->GetEntry()

Please Consider

• We would like the ROOT team to consider:

– Provide an interface (similar to
SetBufferAddress()) set allows client to read
Branch entry w/o de-serialization.

• This should work for all ROOT data

– Similarly on write, SetBufferAddress() should allow
giving serialized data object to ROOT to collect,
compress and write.

Run 2 ATLAS EDM - xAOD
• For Run2 ATLAS is using a new EDM based on the concept of

dynamic data structure – xAOD
– An xAOD type can have a fixed set of static attributes and a random

set of dynamic attributes

• Dynamic attributes can be added at any stage of program execution and
removed when writing data to file

• Data payload changes between event processing stages while the class
type remains the same

TFile

TB
ran

ch
es

Memory
C++

xAOD: TBranches and Memory

• Only dynamic attributes can be dropped
between processing stages
– All attributes that we suspect could be dropped

need to be dynamic

– Every dynamic attribute adds one TBranch

– ATLAS ESD files can have ~10K branches

– An open TFile allocates a buffer for each branch
• Buffer size in memory is multiplied by the compression

ration

• We use a lot of memory

Packing Dynamic Attributes

• Combining dynamic attributes into a single structure
would significantly reduce the number of branches
– The exact shape of the structure is known only at runtime,

when writing data
• Cannot prepare a dictionary beforehand

– ROOT offers 2 ways to define a new class „on the fly”:
• gSystem->CompileMacro(„filename”)

– Builds and loads a shared library with the class definition
– Needs to explicitly include all necessary header files

» Attributes can be of any type!
– (somewhat slow and less elegant solution)

• gInterpreter->Declare(„C++ class definition”)
– Fast, knows all types internally
– But does not produce a TClass with complete reflection information –

necessary to use StreamerInfo to query about data members

Using Dynamic Structures

• Declaration
– Inspecting xAOD dynamic attributes and preparing a string declaration

• Creation
– With TClass::New()

• Filling
– A little of void* pointer acrobatics to set all structure members to

point to the original xAOD storage vectors
– Data members’ offsets seem to follow standard C structure rules

(offset 0, 8, 16, ..)

struct xAODtypename_dynamic {
 // xAOD (Aux) storage vector type attribute name
 std::vector<int> *int_attr_name = 0;
 std::vector<AnyType> *anytype_attr_name = 0; };

Dynamic Structures – I/O

• Writing
– Regular TBranch::SetAddress() and Fill()
– Works as long as all members of the structure have

dictionaries
• Explicit ROOT error if not (good!)

• Reading
– ROOT creates the object (GetEntry())
– Attributes can be inspected using StreamerInfo

• Data members’ offsets are completely different than when
writing!

– No idea how to ask ROOT to read directly into xAOD
storage (which we do when working with single branches)
• Currently using a hack to swap std::vector content

Topics for Discussion

• We are aware we are doing I/O for interpreted
types

• Simple tests are working – more testing
needed
– Reading/merging files with different „versions” of

the dynamic structures

– How to best copy/move the vector payload when
reading

– How to handle new dynamic attributes added
after the structure was defined

