
Web Application for the Dual Readout Calorimeter Database

Jennifer Karkoska

Hajim School of Engineering & Applied Sciences

University of Rochester

Rochester, NY 14627

Hans Wenzel

Computing Division

Fermilab National Accelerator Laboratory

Batavia, IL 60510

Summer Internship in Science and Technology (SIST) Program

August 9, 2011

Table of Contents

2

1. Introduction

2. Materials and Methods

2.1 Netbeans .

2.2 SQL and Postgres SQL .

2.2.1 SQL INSERT INTO .

2.2.2 SQL SELECT DISTINCT .

2.2.3 SQL WHERE Clause .

2.2.4 SQL IN Operator .

2.3 The Java Programming Language: Accessing the Database

2.4 JavaServer Pages (JSP): The Web Application .

2.5 JavaScript: Making the Web Page More Interactive .

2.6 Cascading Style Sheets (CSS): Actual Web Page Design

3. Results

3.1 The Home Page .

3.1.1 Display Categories, Tags, & Values for the DB

3.1.2 Select Plot By Category, Tags, & Values .

3.1.3 Display a Table of All Plots for a Given Category

3.1.4 Select a Plot by ID .

3.2 Select Plot by Category, Tags, and Values .

3.2.1 Select Category .

3.2.2 Select Tags .

3.2.3 Select Values .

3.2.4 Table of Plots That Meet Specifications .

3.3 Details about Plot Table .

3.3.1 The Help Button .

3.3.2 Show # Entries .

3.3.3 Search All Columns .

3.3.4 Search Specific Columns .

3.3.5 Sort by Column(s) .

3.3.6 Plot Preview .

3.3.7 Displaying (#) of Entries .

4

5

5

5

5

6

7

7

8

8

11

11

12

12

12

12

12

12

13

13

13

14

15

15

16

16

16

17

17

18

18

3.3.8 Pagination .

3.3.9 Display Multiple Plots .

3.4 Viewing Single Plots .

3.5 Zooming and Panning .

4. Discussion and Conclusions

5. Future Work

6. Acknowledgements

7. References

8. Appendix

8.1 List of Figures .

8.2 List of Tables .

18

18

19

20

20

21

22

23

24

24

24

Web Application for a Dual Readout Calorimeter Database

Jennifer Karkoska
University of Rochester

Supervisor: Hans Wenzel
(Dated: August 9, 2011)

ABSTRACT:

The Dual Readout Calorimeter Project hopes to find the best materials to make a Dual Readout Calorimeter,

which measures the energy response to both Cherenkov and scintillation light, as accurate as possible. All of the

data and plots from the simulations are stored in the Dual Readout Calorimeter Image Database, where every

plot can be described by a category and various tag names and values. A Web application allows users to easily

find, view, and analyze these plots. Every time a client makes a request, the Web application establishes a

connection with the Structured Query Language (SQL) database, which uses prepared statements to quickly

return information stored in the database. All of the information the client sees is displayed using JavaServer

Pages (JSP), a language based on a combination of Java and HTML. The Web page also incorporates the

JavaScript language to increase functionality and user-interactivity. This paper discusses the various

programming components that are linked together behind-the-scenes to create the Web application the client

actually sees, as well as a guide to using the different features.

4

1. Introduction:

The Dual Readout Calorimeter project at Fermilab hopes to find the best materials to

make a dual readout calorimeter as accurate as possible. A dual readout calorimeter measures

the energy response to both Cherekov and scintillation light. The team working on the

project uses the Geant4 software to run simulations, and their goal is to make the results from

these models as close to the results from actual experiments as possible. In order to keep

improving the models, the team must be able to quickly find and compare the hundreds of

plots that are produced and stored in a database. Every plot can be identified by a category,

such as crystals, various tag names, including type of crystal, sample, and detector used, and

specific values for these names, such as BSO or PbF2. As more simulations are run, the

database continues to grow to include additional categories, names, values, and plots, making

it increasingly difficult to sift through the data. A Java-based Web application allows a user to

easily and efficiently find, view, and compare these different plots.

Originally, this Web application allowed a user to choose a plot based only on an

automatically generated ID number. This did not make use of the fact that every plot can be

described using various user-defined tags. The goal of this project is to allow the user to

narrow down the large collection of plots based on categories and tags. The Web application

5

2. Materials and Methods

2.1. Netbeans

The DRImage Web Application uses the NetBeans Integrated Development

Environment (IDE) to easily compile, debug, and run its many components. NetBeans allows

the user to import all required libraries, connect to the database, and organize Java, CSS,

JavaServer Pages, and all other necessary files. The IDE automatically compiles and builds

all of the files, and displays useful messages to aid in debugging. The various components

that are used to build the web application are described below.

2.2. SQL and PostgreSQL

SQL, or Structured Query Language, allows a user to access and modify databases.

Every record in the database can be inserted, updated, retrieved, and deleted from the database

using SQL statements. SQL also accepts queries about the specific data and will return entries

that meet specifications [2]. The DR Image Database uses PostgreSQL, an open source

object-relational database system, to access its plots and data [9]. All of the data is stored in

tables, which can be queried and searched through in a matter of seconds. Every table is

identified by a name and contains rows of data. The DR Image Database has tables called

“categories,” “tags,” and “images,” each of which has unique identifiers that make up the

columns of the table. In the “tags” table, for example, the columns are labeled with “id”, a

number for a specific entry in the table, “name”, the type of tag, “value”, a specific value for a

tag, and “iid”, the number of the plot with those tags.

In order to access the data in these tables, the DR Image Database uses prepared

statements, which are precompiled statements that are sent directly to the database [10]. These

statements allow the user to have a great deal of control over which entries are displayed and

in what order they appear. This control is the basis for the entire DRImage web application;

the user's selections can be entered on the web page and prepared statements will be created

on the fly. The prepared statements are sent to the database, a connection is established, and

results are returned in seconds. The web application uses an ImageServiceAdapter interface,

where every Java method creates a prepared statement to perform a different task.

makes efficient use of the database when searching through the plots with the user's

specifications. The application also displays the data in a user-friendly manner and allows the

client to compare multiple plots at one time.

id name value iid

64 sample BSO7_A 16

65 mode transmission 17

66 compare vs_sample_10 17

67 crystal_type BSO 17

68 sample BSO8_A 17

69 mode transmission 18

70 compare vs_sample_10 18

71 crystal_type BSO 18

72 sample BSO9_A 18

Table 2.1: Example data from a SELECT FROM SQL statement. This is just a
portion of the data that displays in Netbeans when a connection to the DR Image

Database is established and the prepared statement “SELECT * FROM “public”.tags
is used.

2.2.2 SQL SELECT DISTINCT

The SQL syntax also includes a SELECT DISTINCT statement. In the case of duplicate

values in a table, the user can specify to select only distinct values, so as not to print out the same

value twice [2]. This is particularly useful with the DRImage web application when the user

wishes to select a plot by category, tag names, and values. The application displays a check-box

list of categories, names, and values, and the SELECT DISTINCT statement ensures that every

option will only be printed once (see figure 2.1).

After the data has been inserted into the database, the SELECT FROM statement can retrieve the

appropriate information and display the results in a table. The statement

for example, will display a table of all entries from the “tags” table, as can be seen in table 2.1.

SELECT * FROM “public”.tags

6

2.2.1. SQL INSERT INTO

The SQL syntax includes a variety of clauses and operators to access the database.

Once a table is defined, entries can be added to the table using the INSERT INTO statement

[2]. To insert a new row in the “tags” table, the following SQL statement is used:

INSERT INTO tags (id, name, value, iid)
VALUES (63, 'crystal_type', 'BSO', 16)

7

SELECT DISTINCT (name)
FROM “public”.tags

Mode
Compare

Crystal_type
Energy

Thickness
Particle

Figure 2.1: Example of a SELECT DISTINCT SQL statement. When this statement is used with the DR
Image Database, the list of tags on the right displays in Netbeans. The SELECT DISTINCT statement is
particularly useful when displaying options for the user to choose from to narrow down the plots in the

database.

2.2.3 SQL WHERE Clause

The WHERE clause can be used in a prepared statement to return only records that meet

certain criteria [2]. If the user wants to display plots based on the “mode” tag, for example, the

application should only display values that are associated with “mode” (figure 2.2). The fact that

the application creates these prepared statements on the fly is particularly useful during this

process, because the user's selections will change with every use.

SELECT DISTINCT (value)
FROM “public”.tags WHERE

name='mode'

Transmission
Emission

Figure 2.2: Example of an SQL WHERE clause. This clause is used whenever the user chooses a category,
tags, and values. If the WHERE clause was not used, every single distinct type of value stored in the

database.

2.2.4 SQL IN Operator

The IN operator can be used in conjunction with the WHERE clause to specify multiple

values in the WHERE clause [2]. Every time a query is made to the “images” table, the plots

that meet the specifications are returned as a list of ID numbers to those plots. Before any

selections are made, the image list is comprised of every single plot in the database. Instead of

having to search through the entire image list after every new request is made, the application

searches through the image list that results from the previous query. For example, if the user

chooses the “crystals” category, the IDs for all of the plots within the crystals category are saved

as a list (see figure 2.3). When the user next chooses one or more tags, the prepared statement

queries only the IDs in the list of current images, rather than the entire database. As each

selection is made, the list of images decreases in size. By querying this smaller image list, rather

than the entire database, the results can be returned more quickly.

8

SELECT DISTINCT (value)
FROM “public”.tags WHERE

iid IN (4, 6, 9)

multiple_measurements
PB10_B
PbF_2

transmission
PB2_B
PB5_B

Figure 2.3: Example of the IN SQL operator. Instead of querying the entire entire database of plots, a list
of plot Ids is sent to the database. Only the distinct values associated with plots 4, 6, and 9 are returned,

allowing for greater efficiency and less complex prepared statements to create.

2.3 The Java Programming Language: Accessing the Database

The Java programming language is used to create prepared statements and access the

database via the Web application. An interface defines methods that create prepared statements

to query the database and return the desired information. Every method creates a different

prepared statement to perform a different task. One method, for example, provides a list of plot

ID numbers as a parameter and returns a list of tag names associated with the list. Another

method returns a list of distinct categories in the database. There are also methods used to store,

retrieve, and delete plots in the database.

2.4 JavaServer Pages (JSP): The Web Application

The Java Programming Language accesses the database, but there also must be a link

between Java and the Web application. JavaServer Pages (JSP) provides this link. JSP,

developed by Sun Microsystems, is a combination of Java and HTML, where Java processes

the information and HTML dictates the actual appearance of the web page. When the client

makes a request to the server via the Web application, the server uses a JSP converter to

change the JSP file (.jsp) into a Java servlet (.java file). A Java servlet is a program that runs

on a Web server and creates Web pages on the fly. This is necessary for the Web application

because every page is created based on user input. The servlet is next compiled into a

bytecode (.class) file, which can be run on the server and provides direct access to the

database [7] (see figure 2.4).

9

One challenge that JSP poses is the fact that the Web page reloads every time the user

presses a submit button. This resets all of the form fields, or unchecks all boxes and erases all

text fields. This makes it difficult to have both previously submitted forms and the next set of

selections remain on the same page at the same time. It is helpful for the user to be able to see

what he or she selected previously and allow him or her to change these selections, without

having to go back to the previous page. Frames are used to maneuver around this problem

and allow the user to see the category, tags, and values that he or she selected even after

pressing submit. One JSP file, Frameset.jsp, defines the layout for the main selection page

and divides the page into three separate frames. Every frame has its source frame, which is

either the category, tag, or value frame. Each of these individual frames includes its own JSP

page to actually display the data (see figure 2.5).

Figure 2.4: JSP page translation and processing phases [1]. This figure provides a graphical representation
of the translation of a JSP page into first a servlet (.java) file and then into a bytecode (.class) file.

10

Figure 2.5: Overview of the use of frames in the Framset.jsp file. Frames allow multiple JSP pages to
display on one Web page. This also lets the user see and change his or her past selections of categories,
tags, and values. The header file and category page first appear, then the tag page, and finally the values

page. Each new page appears after the user presses the submit button.

Figure 2.6: Overview of program flow for a servlet-centric application [3]. A Java Servlet bridges the gap
between the client's requests and the SQL database. The servlet sends the data back to the JSP pages,

which displays the results to the client.

At first, only the category page is displayed on the Web page. After the user chooses a

category and presses submit, the user's choice(s) are sent to the database. The list of tags

associated with the plots in the chosen category will appear on the tag page, which is below

the category page. The list of categories with the user's selection will remain on the page,

allowing the user to see and modify his or her past choices. The same is true after the user

selects from the list of tags and the values list appears.

<script type="text/javascript" language="javascript" src="/FILENAME.js"></script>

Figure 2.7: An example HTML <script> tag. JavaScript files, functions, and plug-ins can be easily added
to any JSP file, simply by adding this line of code with the appropriate JavaScipt file as the source

2.5 JavaScript: Making The Web Page More Interactive

JSP is very useful when collecting user data via forms, but it does not provide many

other capabilities for user interaction. JavaScript, on the other hand, adds a great deal of

interactivity between the user and the Web page. The JavaScript code can be inserted directly

into an HTML document using a <script> tag. JavaScript can be used to react to events, such

as a mouse click or mouse hover, and can be used to validate forms. Given all of these

capabilities, it might seem better to use JavaScript than JSP, but JavaScript has some

drawbacks. It acts only on the client side and can therefore only deal with information

available in the client's environment; hence, it cannot directly access a database on the server

side. If a programmer uses JavaScript in his or her Web page, he or she must also use a server

side language, such as JSP, to access the database [5]. The DR Image Web Application uses

JSP to allow interaction between the server and client, and JavaScript to make the client-side

more interactive.

This interactivity is particularly useful for the table of plots that displays after the user

chooses categories, tags, and values. JSP can easily display a static table on the Web page, but

this is not helpful for the user if the table contains a large quantity of data. JavaScript

introduces a dynamic table with sorting, searching, and pagination features. A simple script

tag in the header of the JSP file and the appropriate function calls in the HTML code allows

JavaScript to be easily included (figure 2.7).

11

A final component of the DR Image Web Application involves the actual design and

styling of the Web page. Cascading Style Sheets (CSS) were designed to define how HTML

elements are displayed on a Web page without adding long pieces of formatting code to the

HTML tags. All of the formatting can be saved in an external .css file, which allows the

The JSP page can access the database and return the desired plots to the client, and the

client can use the JavaScript functionality to manipulate the data table as he or she likes. The

DR Image Web Application also uses JavaScript for tooltips, plot previews, and image

zooming.

2.6 Cascading Style Sheets (CSS): Actual Web Page Design

programmer to edit the one .css file and change the appearance of all the pages that include a

reference to it in their headers. CSS can be used to specify page margins, fonts, colors, table

styling, image sizes, and everything in between [2].

12

3. Results

3.1 The Home Page

The DRImageWebApp Home Page can be accessed using any Internet browser by using

the following link: http://g4validation.fnal.gov:8080/DRImageWebApp/. The home page

provides a short description of the Dual Readout project and lets the user know how many plots

are currently stored in the database (figure 3.1). Below the image of a simulation from Geant4,

there is a list of options for how the user can proceed, all of which are described below:

Figure 3.1: A screenshot of the DR ImageDB Home Page.
This is the first page the user sees when he or she browses to

http://g4validation.fnal.gov:8080/DRImageWebApp/

3.1.1 Display Categories, Tags, & Values

for the DB: This page provides a general

overview of the plots that are stored in

the database. A table displays a list of all

the categories that are in the database,

followed by a list of tag names and their

associated values.

3.1.2 Select Plot by Category, Tags, &

Values: This page allows a user to find

specific plots in the database by

narrowing down the choices through a

series of steps. The user chooses a

category, one or more tags, and one or

more values for the chosen tags. A

searchable table will display all of the

plots that meet those specifications and allow the user to view these plots in separate

windows.

3.1.3 Display a table of all plots for a given category: The user can choose one category and a

searchable table will display the tags and values for all of the plots in that category.

3.1.4 Select a plot by ID: Originally the only option, this select-box allows a user to choose a plot

http://g4validation.fnal.gov:8080/DRImageWebApp/

13

based on an ID automatically generated by the database. The plot will display in a separate

window with a list of tags and values associated with the plot.

3.2 Select Plot by Category, Tags, and Values

The second option (Select Plot by Category, Tags, & Values) is the most useful for the

user because it allows the user to find plots that meet specific criteria. The user must make a

series of choices, and after each query is submitted, the next set of options will appear on the

screen. Details about the selections are as follows:

3.2.1 Select Category

A user can choose one

(probably most useful) or more

categories of plots to search through.

 As additional plots with new

categories are added to the database,

the list of categories will

automatically update. The total

number of plots is displayed below

the submit button, which allows the

user to know how many plots are

left that meet his or her specifications (figure 3.2).

Figure 3.2: A screenshot of the select category page. When the user
navigates to the “Select Plot” link on the header, he or she can first

narrow down the plots in the database by choosing a category.

3.2.2 Select Tags

Figure 3.3: A screenshot of the select tag(s) page. After the
user chooses a category and presses the submit button, the

select tag(s) page will appear, while still displaying the
category page.

After the user has chosen a

category (in this case, “crystals”), a list of

all the tags associated with plots from the

chosen category will appear. This list

appears below the category select frame,

which allows the user to view all of his or

her previous selections (figure 3.3).

The user can easily select all of

the tags by clicking the “(un)check all”

button, or can manually check one or

more of the tags.

 The user can also specify whether the database should search for only plots that have all

Figure 3.4: A close-up of the select tag(s) page. A user can choose any number of tags, and whether the
plots contain all or at least one of the chosen tags (AND or OR).

of the chosen tags (“AND”, the default case), or

all plots that have at least one of the tags

(“OR”). The total number of plots left that meet

the user's specifications is once again displayed.

In this example, there are 252 plots

remaining, meaning that the “crystals” category

contains 252 plots (figure 3.4).

14

3.2.3 Select Values

Once the user chooses the tags (in this example, crystal_type AND mode), a list of all

values associated with those tags will appear on the Web page (figure 3.5). The category and

tag tables will still display, once again allowing the user to view his or her previous selections.

Just as with the tag selection, the user can check all or some values, and can choose

“AND” or “OR” when searching through the database of plots. In the example below, it can

be seen that the number of plots is still 252 and hence, every plot in the “crystals” category

has at least a “crystal_type” and a “mode” tag (figure 3.6).

Figure 3.5: A close-up of the select value(s)
page. A user can choose any number of

values, and whether the plots contain all or
at least one of the chosen values (AND or

OR).

Figure 3.6: A screenshot of the select value(s) page. Because
frames are used, the select category and tag(s) pages remain on the
screen, even after the submit buttons are pressed. This allows the
user to see all of his or her previous selections and make changes

without having to reload the page.

3.2.4 Table Of Plots That Meet Specifications

Figure 3.7: A screenshot of a table of plots. If a user were to
choose the "crystals" category, tags of "crystal_type" AND
"mode",and values of "BSO" AND "excitation", the table

would display. The total number of plots is displayed, as well
as a history of the user's selections.

15

After the user chooses the

specific values and presses the

submit button, a new window will

appear. This will display the

number of plots that meet all of

the specifications, a table

describing the history of the

user's selections (categorie(s),

tag(s), and value(s)), and a table

of all the tags and values for the

remaining plots. The results from

the example show that five plots

exist in the “crystals” category,

which use the crystal type “BSO”

and the “excitation” mode (figure

3.7). More specific details about

the table appear in the next

section.

3.3 Details About Plot Table

The table uses a JavaScript plug-in to make it as user-friendly and interactive as

possible. The drawing below highlights the features on a table that displays all of the plots for

the “crystals” category (figure 3.8).

16

3.3.1 The Help Button: In order to explain how the table works, the user can press the help

button and an informational window will pop-up.

3.3.2 Show # Entries: The user can specify how many entries appear in one page of the table

at one time, where the choices are 10, 25, 50, and 100.

Figure 3.9: An example of the search feature in the plot table. A
user can enter one or more values into the “Search all columns”

text field to find only plots that have those values. In this example,
only plots that use BSO as the crystal type and excitation as the

mode are displayed.

3.3.3 Search all columns: If the user

wants only plots with specific values

to appear in the table, he or she can

enter one or more values (separated

by spaces) into the “Search all

columns” text-field. For example, if

he or she types “BSO excitation,”

the table will shrink to display only

the five plots that have both of those

values (figure 3.9).

Figure 3.8: An example plot table with a key of all the features. The table of plots that meet a user's specifications
uses a JavaScript plug-in to make it more user-interactive. The user can sort by column, search through the table,

display a certain number of rows per page, and preview an image of each plot.

3.3.4 Search specific column: The user

can also search for a value in a specific

column by entering a value in the

appropriate text-field at the bottom of

the table. For example, if the user enters

“F22” into the “sample” text-field, the

table will display only the five plots that

use F22 (figure 3.10).Figure 3.10: An example of the “search by column” feature in
the plot table. A user can search a single column for a specific
value, where in this case, only plots that use F22 as a sample

are displayed.

17

3.3.5 Sort by column(s): The

column headers for the table

are all of the tag names

associated with the set of

plots being viewed. By

default, the plots are

displayed in the table based

on their automatically

generated ID number. The

user can click on a column

header to sort the table by a

specific tag, either in

ascending or descending

order. If the user holds down

the shift button, he or she can

sort by multiple columns. In

the example to the right, the

Figure 3.11: An example of the column sorting feature in the plot table. The
table can be sorted by one or more column header(s) (tag name(s)) in

ascending or descending order. The table above is first sorted in ascending
order by crystal type, then mode, and finally by sample.

table is sorted in ascending order first by crystal type, followed by mode, and finally by

sample (figure 3.11).

3.3.6 Plot preview: If the user hovers

the mouse over a plot ID (the left-

most column), a small image of the

plot will appear over the table (figure

3.12). The user can also click the

plot ID and the image will appear as

a pop-up. The user can open as

many plots as he or she desires in

this manner.

Figure 3.12: An example of the plot preview feature in the plot table. The user can see a preview
of the plot by hovering over the ID link in the "Plot ID" column. If the link is pressed, the plot

will display as a pop-up in its own window.

3.3.7 Displaying (#) of entries: Because the table might not be displaying all of the plots with

the given specifications, the table displays a count of the total number of entries in the table, and

how many are currently being displayed.

3.3.8 Pagination: In order to keep the table from becoming too large, only a certain number of

entries will display at one time, where ten is the default. If there are more than ten entries in the

table, the user can click the pagination buttons to go to the first, previous, next, or last page, or

anywhere in between. The current page is highlighted in green.

Figure 3.13: A screenshot of the “display multiple plots” page. If the
user checks multiple plots in the table, a new window will appear with
thumbnails of all the plots. Every image can be enlarged and zoomed.

3.3.9 Display multiple plots:

If the user wishes to view multiple

plots side-by-side, he or she can

check as many plots in the “check

plots” column as he or she desires.

Thumbnails of the plots will display

together in a separate window

(figure 3.13). The user can then

zoom in on the plots or enlarge

them.

18

19

Once the new window appears, every plot can be enlarged and shown as a pop-up,

displayed in a new window with a list of its tags and values, or zoomed in on in the current

window. If all three plots from the above screenshot (figure 3.14) are opened as pop-ups, they

can be viewed side-by-side and easily compared.

Figure 3.14: A screenshot of three plots opened as pop-ups in their own windows. JavaScript allows plots
to be opened as pop-ups, so their enlarged versions to be viewed side-by-side and easily compared.

3.4 Viewing Single Plots

Every plot can be viewed in its

own window with the following

information (figure 3.15):

 Help button with useful information

about using the zooming and panning

features

 Table of tags and values associated

with the plot

 “Click to enlarge” link that will

display the plot as a pop-up

 Full-size image of the plot with

zooming and panning features

Figure 3.15: A screenshot of single plot. Plots can be opened in
their own windows with a table of their tags and values

20

3.5 Zooming & Panning

Figure 3.16: An example of a plot that has been zoomed and panned. The zooming and panning feature
uses a JavaScript plug-in to allow the user to zoom and center on which part of the plot he or she desires.

The Web application also uses a JavaScript plug-in to allow the user to zoom in and pan

on plots (figure 3.16). Instructions for zooming and panning can be found by clicking the

question mark help button on the Web page, and are also listed below.

 How to zoom:

● Use the mouse: the mouse wheel zooms into or out of the image.

● Use the keyboard: zoom in using '+', '=', or 'x' and zoom out using 'z' or '-'

How to pan:

● Use the mouse: click and drag the image to pan.

● Use the keyboard: 'w', 'a', 's', and 'd' pan up, left, down, and right respectively

4. Discussion and Conclusions

The DR Image Web Application now has much more functionality and user capability,

allowing the user to choose plots based on categories, tags, and values, rather than an

automatically generated ID number. This can be done quickly using appropriate prepared

statements to query the SQL database. It is much faster for the program to query the database

with a prepared statement than it is to loop through a list of plots. When I originally could not

figure out how to send the list of current plots to the database to search through, the program

looped through and queried every individual plot in the list. This took a great deal of time and

was a very inefficient way of solving the problem. I was able to take advantage of the IN

operator to deal with this problem so that one prepared statement could be used to query the

list of all current plots.

After the database returns a list of plots that meet the user's specifications, the data is

displayed in a dynamic table. At first, this table used only Java and JSP, which ended up

creating very problematic and overly-complicated code. The table could be easily displayed

using only Java and JSP, but in order to allow for user-interaction, JavaScript was introduced. A

JavaScript plug-in allows the user to search, sort, and page through the various rows and

columns of data, without needing to store and resend the list of plots from the server to the client

on each change. A separate JavaScript plug-in also allows a user to open multiple plots at one

time in their own pop-up window, allowing for easy plot comparison.

5. Future Work

The Web application for the Dual Readout Calorimeter Project can continue to be

improved in the future, but there is one main aspect that is currently being worked on.

Currently, a standalone Java application uploads the plots from a user's computer to the

database. The hope is that users will be able to upload plots directly to the database with the

Web application. This is a challenge because the data must be read locally from the client's

computer, sent to the Web server, and then passed into the database, without the client having

access to the database itself. Once this problem is solved, a user with the correct username and

password will be able to login to the upload page and upload XML files directly to the database.

This Web application is also a general tool that can be used as a framework for accessing other

databases, based on their various tables and tags.

There are also larger goals for the Dual Readout Calorimeter Project in general. The

number of Geant4 simulation tests might reach hundreds of thousands in the next couple years.

This will accumulate a large quantity of data, and increase the number of categories, tags, and

values in the DR Image Database. Comparison of these various tests will hopefully find the best

way to construct a Dual Readout Calorimeter so the results are as accurate as possible.

Additionally, the goal is for the database to become a knowledge base where all of this data will

be stored. If, for example, a user knows what type of crystal or detector to use, the knowledge

base will tell him or her the specific refractive index, mode, and other parameters that are needed

to run the simulation in Geant4. This should help to increase the accuracy of the models and aid

in the creation of a Dual Readout Calorimeter.

21

6. Acknowledgements

I would like to thank Linda Diepholz, Jamieson Olsen, Dianne Engram, my two

mentors David Peterson and Elmie Peoples, and the entire SIST committee for providing me

with this internship opportunity and helping me during the entirety of this summer. I would

also like to thank Dr. James Davenport for providing me with resources for and feedback on

my presentation and paper. I am very appreciative of my supervisor, Hans Wenzel, for

guiding me, answering my questions, and teaching me a great deal about databases, Web

applications, and everything in between. I would also like to thank Adam Para for his

feedback and suggestions for the Web application every week, and for challenging me to think

about how to go about solving different problems in new ways. I enjoyed getting to know the

members of the Simulation of Optical Processes Group and learning more about their projects

during our weekly meetings. Finally, I would like to thank my cubicle buddy and fellow SIST

intern, Edgar Nandayapa, for his constant entertainment throughout the day.

 [1] Bergsten, Hans. JavaServer Pages. 1st. Cambridge: O'Reilly, 2001. Print.

[2] "CSS Tutorial, SQL Tutorial, JavaScript Tutorial." Learn to Create Websites. W3Schools,

2011. Web. 1 Aug 2011. <http://www.w3schools.com/default.asp>.

[3] Fields, Duane, and Mark Kolb. Web Development with JavaServer Pages. Greewich, CT:

Manning Publications Co., 2000. Print.

[4] Firoz, Munawwar. Javascript Image Viewer. Computer software. Spictrading.com Javascript

Image Viewer. Spictrading, 6 Oct. 2010. Web. 21 July 2011.

<http://www.spictrading.com/viewer/home.php>.

[5] Freedman, Alan. "Definition of: JSP." PCMag. The Computer Language Company , 2011.

Web. 1 Aug 2011.

<http://www.pcmag.com/encyclopedia_term/0,2542,t=JSP&i=45685,00.asp>.

[6] Grakalic, Alen. Easiest Tooltip and Image Preview Using JQuery. Computer software.

Easiest Tooltip and Image Preview Using JQuery. CSS Globe, 8 May 2008. Web. 20

July 2011. <http://cssglobe.com/post/1695/easiest-tooltip-and-image-preview-using-

jquery>.

[7] Hall, Marty. "Servlets and JSP: An Overview." Customized J2EE Training.

Coreservlets.com, 2011. Web. 1 Aug 2011. <http://www.apl.jhu.edu/~hall/java/Servlet-

Tutorial/Servlet-Tutorial-Overview.html>.

[8] Jardine, Allan. DataTables. Computer software. Datatables. Vers. 1.8.1. 25 June 2011. Web.

14 July 2011. <http://www.datatables.net/index>.

[9] "About." PostgreSQL. PostgreSQL Global Development Group , 2011. Web. 4 Aug 2011.

<http://www.postgresql.org/about/>.

[10] "Using Prepared Statements." The Java Tutorials. Oracle, 2011. Web. 8 Aug 2011.

<http://download.oracle.com/javase/tutorial/jdbc/basics/prepared.html>.

7. References

23

http://cssglobe.com/post/1695/easiest-tooltip-and-image-preview-using-
http://www.apl.jhu.edu/~hall/java/Servlet-
http://www.datatables.net/index

24

8. Appendix

8.1 List of Figures

Example of a SELECT DISTINCT SQL statement .

Example of an SQL WHERE clause .

Example of the IN SQL operator .

JSP page translation and processing phases .

Overview of the use of frames in the Framset.jsp file .

Overview of program flow for a servlet-centric application .

An example HTML <script> tag .

A screenshot of the DR ImageDB Home Page .

A screenshot of the select category page .

A screenshot of the select tag(s) page .

A close-up of the select tag(s) page .

A close-up of the select value(s) page .

A screenshot of the select value(s) page .

A screenshot of a table of plots .

An example plot table with a key of all the features .

An example of the search feature in the plot table .

An example of the “search by column” feature in the plot table .

An example of the column sorting feature in the plot table .

An example of the plot preview feature in the plot table .

A screenshot of the “display multiple plots” page .

A screenshot of three plots opened as pop-ups in their own windows .

A screenshot of single plot .

An example of a plot that has been zoomed and panned .

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

7

7

8

9

10

10

11

12

13

13

14

14

14

15

16

16

17

17

18

18

19

19

20

8.2 List of Tables
Example data from a SELECT FROM SQL statement .2.1 6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

