Top Quark Production at the Tevatron

Tom Schwarz
University of California Davis

Fermilab Users Meeting June Ist, 2011

top 173 GeV

up down strange charm bottom

3 MeV 7 MeV 110 MeV 1.3 GeV 4.3 GeV

. . .

Area « Mass

Coupling to Higgs

Top Mass

$$\mathbf{y_t} = \sqrt{2} \cdot rac{\mathbf{m_t}}{\mathbf{v}}$$

Higgs Vacuum Expectation

Average Energy in the Higgs Field

Coupling to Higgs

173 **GeV**

$$\mathbf{y_t} = \sqrt{2} \cdot \frac{\mathbf{m_t}}{\mathbf{v}}$$

243 GeV

Coupling to Higgs

173 **GeV**

$$\mathbf{y_t} = \sqrt{2} \cdot \frac{\mathbf{m_t}}{\mathbf{v}} pprox 1.0$$

243 GeV

Production & Decay

Production

$$\sigma_{tt}^{SM} = 7.5 \text{ pb}$$

Decay

~100 %

Production & Decay

Production & Decay

One Lepton, One Neutrino, and 4 Quarks

I Electron or Muon ($E_T \ge 20$ GeV, $|\eta| < 1.1$)

Large "Missing" Energy (Et ≥ 20 GeV)

 \geq 4 Jets (Et \geq 20 GeV, $|\eta|$ < 2.0)

At least I Jet with displaced secondary vertex (Evidence of a 'b'-jet)

Vertex

Ellipses

5 mm

Vertex

et #

I Electron or Muon ($E_T \ge 20$ GeV, $|\eta| < 1.1$)

Large "Missing" Energy (Et ≥ 20 GeV)

 \geq 4 Jets (Et \geq 20 GeV, $|\eta|$ < 2.0)

At least I Jet with displaced secondary vertex (Evidence of a 'b'-jet)

1300 Events (5.3 fb⁻¹) 20 % Background

Top Quark Forward Backward Asymmetry

$$\mathrm{A_{FB}} = \frac{\mathbf{N_{Y>0}} - \mathbf{N_{Y<0}}}{\mathbf{N_{Y>0}} + \mathbf{N_{Y<0}}}$$

Why Measure It?

- Standard model predicts small (~6%) asymmetry
- Evidence of new particles beyond our energy reach can appear in asymmetry measurements

Kuhn, Rodrigo PRL 81,89 (1998)

Why Measure It?

- Standard model predicts small (~6%) asymmetry
- Evidence of new particles beyond our energy reach can appear in asymmetry measurements

Why Measure It?

Reconstructing the Top Direction

- Reconstruct the top direction from the observables in the detector
- Algorithm used to match jets to partons → just add 4-vectors to get top direction

Reconstructing the Top Direction

- Reconstruct the top direction from the observables in the detector
- Algorithm used to match jets to partons → just add 4-vectors to get top direction

Measurement

 $A_{FB} = 16 \pm 7_{stat} \pm 2_{syst} \%$

5.3 fb⁻¹

Directly comparable to SM

 $A_{FB}^{Theory} = 6 \pm 1 \%$

Kuhn, Rodrigo PRL 81,89 (1998)

Reconstructed Top Rapidity Difference

Too much Top?

- Using 4.3 fb⁻¹,
 select 1390 Events
- Predict ~ 1400
- ~ 28% background

Process	Prediction
W+Jets	269
QCD	74
Other	57
tt (7.4 pb)	1000
Data	1390

Rate of Top Production

Process	Prediction
W+Jets	269
QCD	74
Other	57
t t (7.4 pb)	1000
Data	1390

Rate of Top Production

Process	Prediction
W+Jets	269
QCD	74
Other	57
t t (7.4 pb)	1000
Data	1390

 $\sigma_{tt} = 7.2 \pm 0.8 \,\mathrm{pb}$

$$\frac{\Delta\sigma}{\sigma}=11\%$$

$$\sigma_{\mathbf{t}\overline{\mathbf{t}}}^{\mathbf{theory}} = \mathbf{7.4} \pm \mathbf{0.7} \ \mathbf{pb}$$

Luminosity Uncertainty

$$\sigma_{tar{t}} = rac{N_{data} - N_{bkg}}{A \cdot \int \mathcal{L} \, dt}$$

Acceptance Integrated Luminosity
From Simulation 4.3 fb-1

Luminosity Uncertainty

$$R = \frac{\sigma_{t\bar{t}}}{\sigma_Z} = \frac{\frac{N_t - B_t}{A_t \cdot Z}}{\frac{N_Z - B_Z}{A_Z \cdot Z}}$$

Trading Luminosity systematic for uncertainty on Z cross section

$$\sigma_{t\bar{t}} = R \cdot \sigma_Z^{theory}$$

Precision Cross Section

 $\sigma_{tt} = 7.7 \pm 0.5 \text{ pb}$

$$\frac{\Delta\sigma}{\sigma}=6.5\%$$

$$\sigma_{\mathrm{t}\overline{\mathrm{t}}}^{\mathrm{theory}} = 7.4 \pm 0.7 \mathrm{~pb}$$

Precision Cross Section

 $\sigma_{tt} = 7.7 \pm 0.5 \text{ pb}$

$$rac{\Delta\sigma}{\sigma}=\mathbf{6.5}\%$$

$$\sigma_{\mathbf{t}\overline{\mathbf{t}}}^{\mathbf{theory}} = \mathbf{7.4} \pm \mathbf{0.7} \ \mathbf{pb}$$

CDF Run II Goal is $\Delta \sigma / \sigma < 10\%$

Anything obvious at High Energy?

Anything obvious at High Energy?

- Study the asymmetry vs. the mass of the tt system (M_{tt})
- Simply divide sample into high/low M_{tt}
- 450 GeV most sensitive point → based on MC studies

	Inclusive	M < 450 GeV	M > 450 GeV
Data	5.7 ± 2.8 %	-I ± 3 %	21 ± 5 %
SM MC	2 ± 0.4 %	I ± 0.6 %	3 ± 0.7 %

	Inclusive	M < 450 GeV	M > 450 GeV
AFB +	6.7 ± 4 %	-I ± 5 %	21 ± 7 %
AFB -	-5 ± 4 %	2 ± 5 %	-21 ± 7 %

 Unfold M_{tt} dependence back to parton level

$$A_{FB} = 48 \pm 11_{stat+syst} \%$$

5.3 fb⁻¹

 $A_{FB}^{Theory} = 9 \pm 1 \%$

Other Signs?

- DØ collaboration has also performed this measurement
- Do compares the result to the SM as seen by the detector (only corrects for backgrounds)

$$A_{FB}^{data-bkg} = 8 \pm 4_{stat+sys} \%$$

$$A_{FB}^{mc@nlo} = I^{+2.0}_{-1.0} \%$$

$$A_{FB}^{CDF} = 7.5 \pm 3.7 \%$$

Afb in Dileptons

- Alternative channel to previous measurement in single lepton+jets events
- Independent events using different reconstruction algorithm

2 Leptons ($E_T \ge 20$ GeV, $|\eta| < 1.1$)

Large "Missing" Energy (E_T ≥ 50 GeV)

 \geq 2 Jets (E_T \geq 15 GeV, $|\eta|$ < 2.5)

 Σ E_T (jets, leptons) > 200 GeV

Afb in Dileptons

 $A_{FB} = 42 \pm 15_{stat} \pm 5_{syst} \%$

5.1 fb⁻¹

$$A_{FB}^{Theory} = 6 \pm 1 \%$$

$$A_{FB}^{I+Jets} = 16 \pm 7 \%$$

Summary of Results

Inclusive Asymmetry

Summary of Results

For $M_{tt} > 450 \text{ GeV}$

 $A_{FB} = 48 \pm 11_{stat+syst} \%$

5.3 fb⁻¹

 $A_{FB}^{Theory} = 9 \pm 1 \%$

I Have No Idea...

What's Next for Afb

- Time and data really need 4-5σ before we're sure it's not statistics
- D0 will tell us more comparable results, study mass dependence, combination
- Correlated to other observables → LHC needs to see something

STAY TUNED!

Thanks!!!

Robin Erbacher

Veronica Sorin

Rob Roser

Joey Huston

Kevin Lannon

Dan Amidei

Andrew Ivanov

To the Entire CDF Collaboration and wider FNAL Community

Afb in Dileptons

- Top direction correlated with two leptons
- Much simpler than reconstruction algorithm though correlated
- Significance remains

 $A_{FB}^{II} = 14 \pm 5_{stat} \%$ 5.1 fb⁻¹

$$A_{FB}^{Pred} = -2 \pm 2 \%$$

Afb in Dileptons

- What is dependence on M_{tt}?
- Raw data here only we are working on correction methods
- Reconstructed M_{tt} for dileptons ≠ lepton+jets
 - → different algorithms

	M < 450 GeV M > 450 G	
Data	10 ± 7 %	21 ± 10 %
SM MC	0.3 ± 3 %	-4 ± 6 %

Tevatron Top Physics

How is Top Produced

Strong Force
 σ_{tt} ~ 7.5 pb
 Electroweak

 $\sigma_{s+t} \sim 3 \text{ pb}$

How Does Top Decay

- V-A $F_0 \sim 0.7, F_+ \sim 0$
- **V**_{TB} ~ **I**

What are Top's Intrinsic Properties

- Mass
- Spin 1/2
- Charge +2/3

Tevatron Top Physics

How is Top Produced

$$\sigma_{\rm tt} = 7.70 \qquad \delta \sim 6 \%$$

$$\sigma_{s+t} = 2.8 \quad \delta \sim 19 \%$$

$$\sigma_t = 3.1$$
 $\delta \sim 30 \%$

• Strong Force $\sigma_{tt} \sim 7.5 \text{ pb}$

• Electroweak $\sigma_{s+t} \sim 3 \text{ pb}$

How Does Top Decay

$$F_0 = 0.88$$
 $\delta \sim 10 \%$

$$F_{+} = -0.15$$
 $\delta \sim 10 \%$

$$V_{tb} = 0.88$$
 $\delta \sim 9 \%$

What are Top's Intrinsic Properties

$$M_t = 173.3 \delta \sim 0.6 \%$$

$$\Gamma_t \sim 2.1$$
 @ 25%CL

$$\kappa = 0.7$$
 sig ~ I σ

$$q \neq -4/3$$
 @ 95%CL

$$F_0 \sim 0.7$$
, $F_+ \sim 0$

What you shouldn't worry about

Backgrounds

- Too small, and the predicted asymmetry in backgrounds goes in the opposite direction
- Reconstruction
 - If it's broken, it's broken for MANY precision measurements that agree with the SM and other wellvetted techniques

Unfolding

 The significance of the result is present before the acceptance/reconstruction corrections - they only scale the result

Questions...

- Why do muons have a larger asymmetry than electrons?
- ullet Why is the lab frame asymmetry stronger, yet less dependent on M_{tt} ?
- Why is the result in dileptons so much larger?

Muons vs Electrons

* before corrections

selection	N events	all M	$M < 450 \; \mathrm{GeV}/c^2$	$M \ge 450 \ { m GeV}/c^2$
standard	1260	0.057 ± 0.028	-0.016 ± 0.034	$0.212{\pm}0.049$
electrons	735	$0.026 {\pm} 0.037$	-0.020 ± 0.045	$0.120{\pm}0.063$
muons	525	$0.105{\pm}0.043$	-0.012 ± 0.054	$0.348{\pm}0.080$
data $\chi^2 < 3.0$	338	$0.030 {\pm} 0.054$	-0.033 ± 0.065	0.180 ± 0.099
data no-b-fit	1260	0.062 ± 0.028	0.006 ± 0.034	0.190 ± 0.050
data single b-tag	979	$0.058 {\pm} 0.031$	-0.015 ± 0.038	$0.224{\pm}0.056$
data double b-tag	281	0.053 ± 0.059	-0.023 ± 0.076	$0.178{\pm}0.095$
data anti-tag	3019	$0.033 {\pm} 0.018$	$0.029 {\pm} 0.021$	$0.044{\pm}0.035$
pred anti-tag	-	0.010 ± 0.007	$0.013 {\pm} 0.008$	$0.001{\pm}0.014$
pre-tag	4279	0.040 ± 0.015	$0.017{\pm}0.018$	$0.100{\pm}0.029$
pre-tag no-b-fit	4279	$0.042{\pm}0.015$	$0.023{\pm}0.018$	$0.092{\pm}0.029$

What about the di-lepton result?

Flavor	Asymmetry
Inclusive	14 ± 5 %
e-e	27 ± 11 %
e-u	6.4 ± 7.6 %
u-u	17 ± 10 %

Lab Frame

- Alternative method
 - Lab Frame

 Takes the Lepton Pt and Neutrino out of it, still depend on lepton charge

 $A_{FB} = 15 \pm 5_{stat+syst}$ %

Lab Frame

	Inclusive	M < 450 GeV	M > 450 GeV
Data - tt Frame	5.7 ± 2.8 %	-I ± 3 %	21 ± 5 %
SM Prediction	2 ± 0.4 %	I ± 0.6 %	3 ± 0.7 %
Data - pp Frame	7.3 ± 2.8 %	5.9 ± 3.4 %	10.3 ± 4.9 %
SM Prediction	2 ± 0.4 %	-1 ± 0.5 %	2 ± 0.7 %

Dileptons vs L+Jets

 $A_{FB} = 42 \pm 15_{stat} \pm 5_{syst} \%$

5.1 fb⁻¹

 $A_{FB} = 16 \pm 7_{stat} \pm 2_{syst} \%$

0

5.3 fb⁻¹

 $q \Delta y = y_t - y_{\bar{t}}$

Mtt Dependence

• What is the optimal high/low bin-edge (based on MC)?

	OctetA		OctetB	
bin-edge	$A^{ m tt}$	significance	A^{tt}	significance
$({ m GeV}/c^2)$				
345	0.082 ± 0.028	2.90	0.168 ± 0.028	5.99
400	0.128 ± 0.036	3.55	0.235 ± 0.035	6.74
\rightarrow 450	0.183 ± 0.047	3.91	0.310 ± 0.044	7.08
500	0.215 ± 0.060	3.60	0.369 ± 0.054	6.81
550	0.246 ± 0.076	3.25	0.425 ± 0.066	6.43
600	0.290 ± 0.097	2.97	0.460 ± 0.081	5.70

Models provided by Tim Tait

Mtt Dependence

- Interesting effect
- Want to correct this now to compare directly to SM - unfolding
- 450 GeV choice though lies on a weird spot
- We're stuck with what we chose, but this demonstrates the limits of 4-bin unfolding

Reconstruction and Corrections

- Reconstruct the top direction from the observables in the detector
- Biggest problem is to match the jets in the detector to the "true" decay products of t and \overline{t} ?
- 4 Jets to match to 4 quarks leads to 24 combinations
- Use the event topology to build an algorithm!

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{lv} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj} - M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv} - M_{fit})^2}{\Gamma_t^2}$$

$$\chi^2 = \sum_{i=l,jets} \frac{(p_t^{i,meas} - p_t^{i,fit})^2}{\sigma_i^2} + \sum_{j=x,y} \frac{(p_j^{UE,meas} - p_j^{UE,fit})^2}{\sigma_j^2}$$

$$+ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{lv} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj} - M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv} - M_{fit})^2}{\Gamma_t^2}$$

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+\frac{(M_{jj}-M_W)^2}{\Gamma_W^2}+ \frac{(M_{lv}-M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj}-M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv}-M_{fit})^2}{\Gamma_t^2}$$

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+\frac{(M_{jj}-M_W)^2}{\Gamma_W^2}+\frac{(M_{lv}-M_W)^2}{\Gamma_W^2}+\frac{(M_{bjj}-M_{fit})^2}{\Gamma_t^2}+\frac{(M_{blv}-M_{fit})^2}{\Gamma_t^2}$$

$$\chi^{2} = \sum_{i=l,jets} \frac{(p_{t}^{i,meas} - p_{t}^{i,fit})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,meas} - p_{j}^{UE,fit})^{2}}{\sigma_{j}^{2}}$$

$$+\frac{(M_{jj}-M_W)^2}{\Gamma_W^2} + \frac{(M_{lv}-M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj}-M_{fit})^2}{\Gamma_t^2} + \frac{(M_{blv}-M_{fit})^2}{\Gamma_t^2}$$

$$\chi^2 = \sum_{i=l,jets} \frac{(p_t^{i,meas} - p_t^{i,fit})^2}{\sigma_i^2} + \sum_{j=x,y} \frac{(p_j^{UE,meas} - p_j^{UE,fit})^2}{\sigma_j^2}$$

$$+\frac{(M_{jj}-M_W)^2}{\Gamma_W^2}+\frac{(M_{lv}-M_W)^2}{\Gamma_W^2}+\frac{(M_{bjj}-M_{fit})^2}{\Gamma_t^2}+\frac{(M_{blv}-M_{fit})^2}{\Gamma_t^2}$$

All particle energies and angles are available after reconstruction