

Search for a Standard Model-like Higgs boson decaying into $W^+W^- \rightarrow lVq\bar{q}'$ final state in high mass

Bibhuti Parida

for the CMS Collaboration

Tata Institute of Fundamental Research, Mumbai

New Perspectives 2015

Fermi National Accelerator Laboratory

Outline

- Introduction
- Search for a high mass Higgs in W ⁺ W⁻ → lvqq' final state
 - Analysis feature
 - W-tagging
 - Definition of exclusive jet bins
 - Data-MC comparison
- Background extraction
- Statistical interpretation
- Conclusions

Introduction

- Standard Model-like Higgs boson is discovered at ~ 125 GeV
- Still it is important to keep searching in the high mass regime
- We search for a SM-like Higgs Boson decaying into WW \rightarrow lvqq' in the high mass region (600- 1000 GeV)
- The search is performed in the semi-leptonic final state in exclusive jet bins
- This analysis is also the benchmark for future analysis of W+W scattering

Production mechanisms

- Gluon gluon fusion (ggH)
- Vector boson fusion (VBF)

Analysis feature

<u>Kinematics:</u> boosted leptonic W back-to-back to a merged jet <u>Discriminating observables:</u> pruned jet mass (m_J) and three-body mass (m_{IvJ}) <u>Unbinned shape limits</u> using m_{IvJ} distributions

Data:

Full 2012 , $\sqrt{s}=8$ TeV Ele + Muon Sample, 19.3 fb⁻¹

Background estimation

Data-driven Background extraction using $m_{_{\rm J}}$ sideband for W+ jets and top enriched control regions

Object definition and event selection

Muon ID + Selection:

Muon Tight ID $p_T > 24 \text{ GeV}, |\eta| < 2.1$

Electron ID + Selection:

Electron MVA ID tight $p_T > 27$ GeV, $|\eta| < 2.5$

MC lepton efficiencies corrected by Tag &Probe on Z

Jets

Merged jet: CA8 with CHS (Loose Jet ID)
- AK7 JEC applied on the CA8

VBF jets: Standard AK5

(Loose Jet ID + loose pileup jet ID)

b-veto: CSV with a medium working point

MET

Type -1 corrected PF MET

Φ modulation correction

Leptons: $p_T \mu$ (e) > 30 (35) GeV; veto any 2nd μ or e with p_T >10 (20) GeV

Missing transverse energy: MET μ (e) > 50 (70) GeV Boosted regime: $p_T(Jet)$ > 200 GeV and $p_T(Iv)$ > 200 GeV

Topological back-to-back angular cuts:

 $|\Delta\Phi$ _{W-lep, CA8} |>2.0, $|\Delta\Phi$ _{MET, CA8} |>2.0 and $|\Delta$ R_{lep, CA8} $|>\pi/2$

Selection on the merged jet (W-tagging)

Grooming techniques: remove soft radiation and pileup from the jet (e.g., pruning)

Pruned jet mass: [65-105] GeV \rightarrow signal region [40,65] and [105,130]GeV \rightarrow sideband

- τ_N tends to be zero when the jet is consistent with N subjets
- N-subjettiness; $\tau_2/\tau_1 < 0.5$

Categorization of jet bins

- Select the highest p_T CA8 jet as the hadronic W candidate
- Collect the AK5 jets at a distance $\Delta R > 0.8$ from the hadronic W candidate (with $p_T > 30$ GeV)

2-jet bin: additional selection

VBF jets: Two powerful observables to discriminate signal against background $\Delta \eta_{ii}$ and M_{ii}

VBF Selection and optimization:

- In the TMVA optimization VBF = signal
- ggH is a part of the background together with ttbar, W+Jets, VV and Single-Top in order to enhance the presence of VBF in the final selected sample

Working point:

 $\Delta \eta_{jj} > 3.0 \&\& M_{jj} > 250 \text{ GeV}$ (signal efficiency: ~ 80%)

Data-MC comparison

Background extraction

 \square The limit is calculated from the unbinned shapes in $m_{|v|}$

Signal Shapes:

Fits from MC, reweighted line shape

Background Shapes

- > ttbar, Single top, WW/WZ (non-dominant)
 - Fits from MC, normalization corrected by data-to-MC scale factors
 - ttbar normalization taken from a top-enriched control region
- > W+ jets (dominant)
 - Data driven technique:
 - W+jets normalization estimated from sideband fit of m_i
 - W+jets shape in \mathbf{m}_{lvJ} is taken from the m_J sideband region and then extrapolated into the signal region
 - Extrapolation function (**m**_{lvl} dependent) is taken from MC

$$F_{\mathrm{data,SR}}(m_{l\nu j}) = \alpha_{\mathrm{MC}}(m_{l\nu j}) \times F_{\mathrm{data,LSB}}(m_{l\nu j})$$

$$\alpha_{\text{MC}}(m_{l\nu j}) = \frac{F_{\text{MC,SR}}(m_{l\nu j})}{F_{\text{MC,LSB}}(m_{l\nu j})}$$

where

and SR= Signal region: m_j = [65-105] GeV LSB= Low sideband region: m_j = [40-65] GeV & m_j =[105-130] GeV

W + jet Bkg: Normalization procedure (m, sideband fit)

Background estimation

Uncertainties on W+ jets shape/normalization from:

W + jet sideband fit α function fit shape uncertainty Shape uncertainty from alternate parton shower and alternate fitting function

Statistical interpretation

- No significant excess observed in the investigated mass region
- An expected sensitivity to exclude at 1.1 (3.3) times the SM cross section for a Higgs boson mass of 600 (1000) GeV

Conclusions

- A search is presented for a heavy Higgs boson (m_H = 600-1000 GeV) in the semi-leptonic WW final state in exclusive jet bins
 - Novel jet substructure techniques are employed in the search
 - Limits are presented for the SM Higgs case for 0+1 and 2-jet bin case
 - No evidence for a SM-like Higgs boson is found in the investigated region.

Thank you

Data and MC Samples

- We use Prompt-Reco dataset
- Pat-Tuples frozen from spring 2012, processed in CMSSW_5_3_X

Monte Carlo:

<u>Signal</u>: SM Higgs, qqH & ggH at 8TeV-powheg-pythia

(Private production) $[m_H = 600-1000 \text{GeV}]$

Background:

W+ Jets: (Boosted W+1 jet sample, Herwig++ and madgraph+Pythia6)

exclusive MG+Pythia6 samples (Exclusive W+1jet, W+2Jets , W+3Jets etc.)

ttbar: Powheg+ pythia6 (also mc@NLO: to assign sys uncertainty)

Single top: Powheg+ pythia6

VV (WW;WZ;ZZ): Pythia6

WW EWK: phantom + pythia6 (private production)

DY + Jets: Madgraph+ pythia6

Data:

Full 2012 Ele + Muon, $\sqrt{s} = 8$ TeV Sample, 19.3 fb⁻¹

Data-MC comparison at pre-selection level (0+1 jet bin muon channel)

Data-MC comparison at pre-selection level (2- jet bin muon channel)

extrapolation function α_{MC} (m $_{IvJ}$)

$$\alpha_{\mathrm{MC}}(m_{l\nu j}) = \frac{F_{\mathrm{MC,SR}}(m_{l\nu j})}{F_{\mathrm{MC,LSB}}(m_{l\nu j})}$$

Systematics

Syst. uncertainty	W+jets	tī	single t	VV	W+jets	tī	single t	VV	WW _{ewk}
Luminosity	-	2.6%	2.6%	2.6%	-	-	2.6%	2.6%	2.6%
Bkg. Cross Sec.	-		30%	20%	-	-	30%	20%	20%
Trigger Eff.		1%	1%	1%		1%	1%	1%	1%
Lepton Eff.		2%	2%	2%	-	2%	2%	2%	2%
B-Tagging		1.7%	3.3%	0.6%	-	1.5%	3%	0.5%	0.7%
W-Tagging	-		-	9.3%	-	-	-	9.3%	9.3%
Top Normalization		6.5%		-		26.5%	-	-	
W+jet Normalization	5-8%	•	-	-	22%	-	-	-	-
Lepton Scale		0.4%		1%	-	0.5%	-	1.5%	1%
Lepton Res.		•		-	-	-	-	-	0.8%
Jet Scale (JES)	2.7%	4%	4.1%	3%	2.1%	4.1%	7.1%	7.5%	4.6%
Jet Res. (JER)	1%	0.4%	0.9%	0.7%	1.9%	3.1%	8.3 %	4.3%	6.3%

Syst. uncertainty	ggH	VBF	ggH	VBF	
Luminosity	2.6%	2.6%	2.6%	2.6%	
PDF gg	-	9.1%*	-	9.1%*	
PDF qq	-	5%*	-	5%*	
ggH0In	26%	-	-	-	
ggH2In	6%	-	19%	-	
Int ggH	10%	-	10%	-	
Int vbfH	-	10%	-	10%	
Trigger eff.	1%	1%	1%	1%	
Lepton eff.	2%	2%	2%	2%	
B-Tagging	0.5%*	0.2%*	0.5%*	0.2%*	
W-Tagging	9.3%	9.3%	9.3%	9.3%	
Lepton Scale	2.1%*	1.5%*	3.5%*	1.8%*	
Jet Scale (JES)	3.9%*	4.4%*	5.0%*	4.5%*	
Jet Res (JER)	2.5%*	3.5%*	8.0%*	10.6%*	

List of systematic uncertainties on background normalisation: left part of the table refers to 0+1 jet bin, right to 2-jet bin category.

List of systematic uncertainties on signal (ggH and VBF) normalisation: left part of the table refers to 0+1 jet bin, right to 2-jet bin category.(* stands for mass dependent systematics)

Background Systematics

Signal Systematics