The *p*-air inelastic cross section at $\sqrt{s} \approx 2$ TeV

Gian Carlo Trinchero IFSI-INAF and INFN, Torino EAS-TOP Collaboration

ISVHECRI 2010 June 28-July 2 Fermi National Accelerator Laboratory Batavia, Illinois – U.S.A.

XVI International Symposium on Very High Energy Cosmic Rays InteractionsG.C. TrincheroISVHECRI - June 29°, 2010.

Introduction

Accelerator data up to $\sqrt{s}=1.8$ TeV Available results differ of $\approx 10\%$ exceeding the statistical uncertainties of the individual measurements

PRD 50 (1994),5550
PLB 445(1999),419

Introduction

Accelerator data up to $\sqrt{s}=1.8$ TeV Available results differ of $\approx 10\%$ exceeding the statistical uncertainties of the individual measurements

•PRD 50 (1994),5550 •PLB 445(1999),419

The interpretation of EAS measurements rely on simulation based on Hadronic Interaction Models which exhibit large differences at the highest energies

Introduction

Accelerator data up to $\sqrt{s}=1.8$ TeV Available results differ of $\approx 10\%$ exceeding the statistical uncertainties of the individual measurements

•PRD 50 (1994),5550 •PLB 445(1999),419

The interpretation of EAS measurements rely on simulation based on Hadronic Interaction Models which exhibit large differences at the highest energies

 σ^{in}_{p-air} and σ^{tot}_{pp} are related (Glauber) Result of different calculations differing $\approx 20\%$ around $\sqrt{s}=2$ TeV

Frequency Attenuation: Constant N_e-N_{μ} cuts

G.C. Trinchero

ISVHECKI - JUNE 27, 2010.

Frequency Attenuation: Constant N_e-N_{μ} cuts

Primary Energy E_0 selected using muon number $E_1 < E_0 < E_2 \implies N_{\mu,1} < N_{\mu} < N_{\mu,2}$

Shower development stage selected using shower size $N_{e,1} < N_e < N_{e,2}$

Frequency Attenuation: Constant N_e-N_{μ} cuts

Primary Energy E_0 selected using muon number $E_1 < E_0 < E_2 \implies N_{\mu,1} < N_{\mu} < N_{\mu,2}$

Shower development stage selected using shower size $N_{e,1} < N_e < N_{e,2}$

 $\Phi(\theta) = \Phi_0 \exp[-(x_0 \sec\theta - d)/\lambda_{p-air}]$ $\Phi(\theta) / \Phi(0) = \exp[-(x_0 \sec\theta - 1)/\lambda_{p-air}]$

Fly's Eye PRL 52 (1984) 1380

Fig. 1 An extensive air shower that survives all data cuts. The curve is a GaisserHillas shower-development function: shower parameters E=1.3 EeV and $X_{max} = 727 \pm 33$ g cm⁻² give the best fit.

Fluctuations: k parameter

The observed absorption length is affected by fluctuations in the longitudinal development of cascades and in the detector response. The k parameter is obtained from simulation and accounts for all fluctuations:

 $\sigma_{n-air}^{\text{inel}} = k \cdot (14.5) / \text{N} \cdot \lambda_{\text{obs}} = 2.411 \cdot 10^4 / \lambda_{\text{p-air}}$ lmb

G.C. Trinchero

Fluctuation are lower if showers at maximum development are selected
This technique cannot always be applied .

✓ Once the primary CR energy (i.e. X_{max}), observation level (x_0) and angular acceptance are defined, also the accessible part of the tail of X_{max} distribution is determined. G.C. Trinchero ISVHECRI - June 29°, 2010.

Fluctuation are lower if showers at maximum development are selected
This technique cannot always be applied .

✓ Once the primary CR energy (i.e. X_{max}), observation level (x_0) and angular range are defined, also the part of the X_{max} distribution that can be used is fixed.

G.C. Trinchero

Fluctuation are lower if showers at maximum development are selected
This technique cannot always be applied .

✓ Once the primary CR energy (i.e. X_{max}), observation level (x_0) and angular range are defined, also the part of the X_{max} distribution that can be used is fixed.

G.C. Trinchero

Fluctuation are lower if showers at maximum development are selected
This technique cannot always be applied .

✓ Once the primary CR energy (i.e. X_{max}), observation level (x_0) and angular range are defined, also the part of the X_{max} distribution that can be used is fixed.

G.C. Trinchero

EAS-TOP 1989-2000

Campo Imperatore 2000 m a.s.l. 820 g·cm⁻² 10¹⁴ <E0 <10¹⁶

Hadrons
E.M.
Low Energy μ (E_μ > 1 GeV)
Atmospheric Čerenkov Imaging
H.E. μ (E > 1.3 TeV) (MACRO & LVD)

EAS-TOP 1989-2000 Campo Imperatore 2000 m a.s.l 10¹⁴ <E0 <10

Hadrons
E.M.
Low Energ
Atmospher
H.E. μ (Ε

EAS-TOP 1989-2000

Campo Imperatore 2000 m a.s.l. 820 g·cm⁻² 10¹⁴ <E0 <10¹⁶

Hadrons

E.M.

Low Energy μ (E_μ > 1 GeV)
Atmospheric Čerenkov Imaging
H.E. μ (E > 1.3 TeV) (MACRO & LVD)

For Ne> $2 \cdot 10^5$ 0.1 $\sigma_{v_c} = 5 \text{ m}$ $\sigma_{\rho} \cong$

EAS-TOP 1989-2000

Campo Imperatore 2000 m a.s.l. 820 g·cm⁻² 10¹⁴ <E0 <10¹⁶

Hadrons
E.M.
Low Energy μ (E_μ > 1 GeV)
Atmospheric Čerenkov Imaging
H.E. μ (E > 1.3 TeV) (MACRO & LVD)

8 x 13 cm Fe layers 9x144 m² streamer tubes

k parameter

$N'_{sel}(\theta) = N_{sel}(\theta, N_1 \le N_{\mu,x} \le N_2, 6.01 \le Log(N_e) \le 6.17) \cdot \Gamma_1(\theta)$

Experimental data

$$\lambda_{obs}^{exp} = 80.2 \pm 4.3 \text{ g/cm}^2$$
$$\lambda_{p-air}^{exp} = \lambda_{obs}^{exp} / k$$
$$\lambda_{p-air}^{exp} = 71 .0 \pm 4.1 \text{ g/cm}^2$$

$$\sigma_{p-\text{air}}^{\text{inel}} = 2,41*10^4 / \lambda_{p-\text{air}}^{\exp} = 341 \pm 20 \text{ mb}$$

$$\lambda_{obs}^{exp} = 84.7 \pm 5.0 \text{g/cm}^2$$
$$\lambda_{p-air}^{exp} = \lambda_{obs}^{exp} / k$$
$$\lambda_{p-air}^{exp} = 72.2 \pm 4.2 \text{ g/cm}^2$$

 $\sigma_{p-\text{air}}^{\text{inel}} = 2,41*10^4 / \lambda_{p-\text{air}}^{\exp} = 335 \pm 21 \text{ mb}$

ISVHECRI - June 29°, 2010.

G.C. Trinchero

Heavier Primaries

systematic uncertainty: σ_{sys} (He)= -29 mb

G.C. Trinchero

Experiment	SIBYLL 2.1		QGS	SJET II	QGSJET II _{HDPM} $\sigma_{p=air}^{inel} = 367 \pm 1 \text{ mb}$		
	$\sigma_{p-air}^{inel} = 4$	$406 \pm 1 \text{ mb}$	$\sigma_{p-air}^{inel} = 400 \pm 1 \text{ mb}$				
Analysis	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p\text{-air}}^{\text{inel}} \text{ [mb]}$	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p\text{-air}}^{\text{inel}}$ [mb]	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p\text{-air}}^{\text{inel}} \text{[mb]}$	
SIBYLL 2.1			419 ± 12	$+19 \pm 12$	372 ± 13	$+5 \pm 13$	
QGSJET II	393 ± 11	-13 ± 11			361 ± 12	-6 ± 12	

				1			
Experiment	SIBYLL 2.1		QGS	SJET II	QGSJET II _{HDPM} $\sigma_{p-air}^{inel} = 367 \pm 1 \text{ mb}$		
-	$\sigma_{p-air}^{inel} = c$	$406 \pm 1 \text{ mb}$	$\sigma_{p-air}^{inel} = 400 \pm 1 \text{ mb}$				
Analysis	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p\text{-air}}^{\text{inel}}$ [mb]	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p-\text{air}}^{\text{inel}} \text{[mb]}$	
SIBYLL 2.1			419 ± 12	$+19 \pm 12$	372 ± 13	$+5 \pm 13$	
QGSJET II	393 ± 11	$(-13) \pm 11$			361 ± 12	-6 ± 12	

	1					
Experiment	SIBYLL 2.1		QGS	SJET II	QGSJET UHDPM	
Analysis	$\sigma_{p-\text{air}}^{\text{and}} = \sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p-\text{air}}^{\text{inel}} \text{[mb]}$	$\sigma_{p-\text{air}}^{\text{inel}} = \sigma_{p-\text{air}}^{\text{inel}}$	$\Delta \sigma_{p-air}^{inel}$ [mb]	$\sigma_{p-\text{air}}^{\text{inel}} = 3$ $\sigma_{p-\text{air}}^{\text{inel}} \text{ [mb]}$	$\Delta \sigma_{p-\text{air}}^{\text{inel}} \text{[mb]}$
SIBYLL 2.1			419 ± 12	$+19 \pm 12$	372 ± 13	$+5 \pm 13$
QGSJET II	393 ± 11	-13 ± 11			361 ± 12	-6 ± 12

Experiment	ent SIBYLL 2.1 $\sigma_{p-air}^{inel} = 406 \pm 1 \text{ mb}$		QG	SJET II	QGSJET II _{HDPM} $\sigma_{p-air}^{inel} = 367 \pm 1 \text{ mb}$		
			$\sigma_{p-air}^{inel} \neq$	400 ± 1 mb			
Analysis	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p-\text{air}}^{\text{inel}} \text{ [mb]}$	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p-\text{air}}^{\text{inel}} \text{[mb]}$	
SIBYLL 2.1			419 ± 12	$+19 \pm 12$	372 ± 13	$+5 \pm 13$	
QGSJET II	393 ± 11	-13 ± 11			361 ± 12	-6 ± 12	

In order to determine the systematic uncertainties due to the analysis procedure (e.g. HE interaction model), the cross section is reconstructed with a model that differs from the one used to produce the simulated datasets

				1			
Experiment	SIBYLL 2.1		QGS	SJET II	QGSJET II _{HDPM}		
$\sigma_{p-air}^{inel} = 406 \pm 1$		$406 \pm 1 \text{ mb}$	$\sigma_{p-air}^{inel} =$	$400 \pm 1 \text{ mb}$	$\sigma_{p-air}^{inel} = 367 \pm 1 \text{ mb}$		
Analysis	$\sigma_{p-\text{air}}^{\text{inel}} \text{ [mb]}$	$\Delta \sigma_{p\text{-air}}^{\text{inel}} \text{ [mb]}$	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p\text{-air}}^{\text{inel}}$ [mb]	$\sigma_{p-\text{air}}^{\text{inel}}$ [mb]	$\Delta \sigma_{p-\text{air}}^{\text{inel}} \text{[mb]}$	
SIBYLL 2.1		0	419 ± 12	$(+19) \pm 12$	372 ± 13	$+5 \pm 13$	
QGSJET II	393 ± 11	$(-13) \pm 11$			361 ± 12	-6 ± 12	

$$\sigma_{syst} = 19 \text{ mb} (99\%)$$

EAS-TOP *p*-air cross section at $\sqrt{s} \approx 2$ TeV

EAS-TOP: *p*-air $\iff pp$ at $\sqrt{s} \approx 2$ TeV

Summary

• The absorption length of cosmic ray proton showers at maximum development in the energy range $E_0 = (1.5 \div 2.5) \cdot 10^{15} \text{ eV}$ (i.e. at $\sqrt{s} \approx 2 \text{ TeV}$) is measured at the atmospheric depth of 820 g/cm²

 $\sigma_{p-\text{air}}^{\text{inel}} = 338 \pm 21_{\text{stat}} \pm 19_{\text{syst}} - 29_{\text{syst}(\text{He})} \text{ mb}$

This value is about 20% smaller than the values in use within most used hadronic interaction models

•Deeper shower penetration in the atmosphere with respect to the predictions of the interaction models

Equivalent c.m. energy \s_m

 10^{4}

[GeV]

Outlook

Shower Max Selection

Ne @ max of p Showers with primary energy in the range $1.5 \cdot 10^6 \text{ GeV} \leq E_0 \leq 2.5 \cdot 10^6 \text{ GeV}$

 $Log(N_e) = \langle Log(N_e^{max}) \rangle \pm 1 \text{ s.d.}$

 $6.01 < Log(N_e) < 6.17$ (<5% of the ev. selected with N_{u.x}.)

 $E_{median} = 2.49 \cdot 10^{15} \text{eV}$ with r.m.s. $0.78 \cdot 10^{15} \text{eV}$

 $6.01 < Log(N_e) < 6.17$ (<5% of the ev. selected with N_{u.x}.)

$$E_{median} = 2.50 \cdot 10^{15} eV$$
 with r.m.s. $0.80 \cdot 10^{15} eV$

EAS-TOP *p*-air cross section at $\sqrt{s} \approx 2$ TeV

High energy hadronic interaction model	$\lambda_{\rm int}^{\rm sim}~[{ m g/cm^2}]$	$\lambda_{\rm obs}^{\rm sim}~[{ m g/cm^2}]$	k	$\lambda_{\rm obs}^{\rm exp}$ [g/cm ²]	$\lambda_{\rm int}^{\rm exp} ~[{\rm g/cm^2}]$	$\sigma_{p\text{-air}}^{\text{inel}} \text{ [mb]}$
SIBYLL 2.1 QGSJET II	$\begin{array}{c} 59.4 \pm 0.1 \\ 60.3 \pm 0.1 \end{array}$	$\begin{array}{c} 69.9 \pm 1.4 \\ 68.5 \pm 1.4 \end{array}$	$\begin{array}{c} 1.18 \pm 0.02 \\ 1.14 \pm 0.02 \end{array}$	$\begin{array}{c} 84.7 \pm 5.0 \\ 80.2 \pm 4.3 \end{array}$	$\begin{array}{c} 71.8 \pm 4.5 \\ 70.7 \pm 4.2 \end{array}$	$\begin{array}{c} 336\pm21\\ 341\pm20 \end{array}$

Electron Size N_e Cuts (Stability)

$$R(\mathcal{G}_1, \mathcal{G}_2) = \frac{f(N_{\mu}, N_{e_1}, \mathcal{G}_1)}{f(N_{\mu}, N_{e_2}, \mathcal{G}_2)} = \exp\left[-\frac{X_{\nu}}{\Lambda_{obs}}(\sec \mathcal{G}_1 - \sec \mathcal{G}_2)\right]$$

FIG. 5. Ratios of number of proton-initiated showers having between $10^{5.25}$ and $10^{5.45}$ muons and electron size N_e at 920 g/cm² as a function of N_e . Histograms correspond to showers simulated using SIBYLL 2.1, and points to showers simulated with QGSJET98.

J.Alvarez-Muñiz et al., Phys. Rev D 66, 123004

Event Selection

QGSJet01Perfect selection

Selection criteria provide events with deeper interaction in the atmosphere with increasing zenith angle

 E_0 selection (using muon number) does not modify the average depth of first interaction

p-air cross section at $\sqrt{s} \approx 2 \text{ TeV}$

 $\sigma_{p-\text{air}}^{\text{inel}} = 365 \pm 24(\text{stat}) - 28(\text{sys}) \text{ mb}$

.

G.C. Trinchero