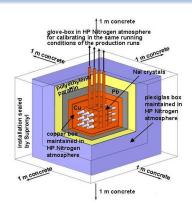
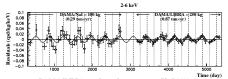
The SABRE Dark Matter Search Experiment

Francis Froborg
For the SABRE Collaboration

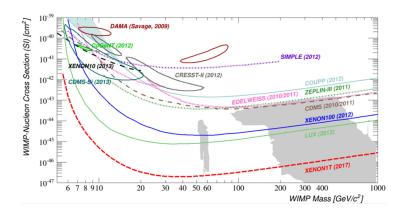
DMUK 18 January 2017


Imperial College London

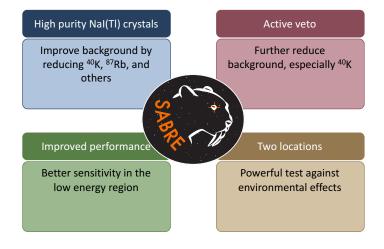


The DAMA/LIBRA Experiment

- 25 high purity NaI(Tl) crystals with 9.7 kg each
- 2 PMTs per crystal coupled via quartz light guide
- Passive external shielding
- Located at LNGS (\sim 3200 m.w.e.)
- Modulation at 2– 6 keV_{ee}
- Effect ~ 2 %, 9.3σ C.L.
- Peak end of May / beginning of **June**

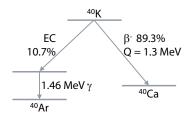


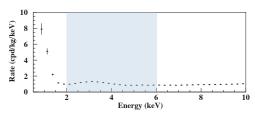
DAMA/LIBRA results and perspectives, Bled 2013


00

Not So Current Status - The Tension

What Makes SABRE Special?

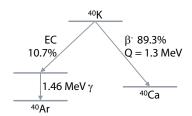

SABRE: Sodium iodide with Active Background REjection

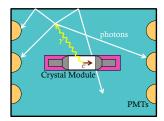


Active Veto: The Principle

⁴⁰K Decay

- $^{\text{nat}}\text{K} \simeq 93\% \, ^{39}\text{K} + 0.012\% \, ^{40}\text{K} + 7\% \, ^{41}\text{K}$
- 3 keV Auger e $^-$ accompanying 1.46 MeV γ after electron capture \Rightarrow Right in the region of interest
- DAMA reports 13 ppb ^{nat}K contamination in their crystals





Active Veto: The Principle

⁴⁰K Decay

- \bullet nat K $\simeq 93\%$ ³⁹K + 0.012% ⁴⁰K + 7% ⁴¹K
- 3 keV Auger e⁻ accompanying 1.46 MeV γ after electron capture \Rightarrow Right in the region of interest
 - \Rightarrow Coincidence between e⁻ and γ can be used to veto such events
- DAMA reports 13 ppb ^{nat}K contamination in their crystals

00000000

High Purity Crystals The NaI Powder

Development of Ultra High Purity Powder

- Collaboration with 2 industrial partners for production
- Independent high sensitivity impurity measurements
- R&D on further purification ongoing

Element	Sigma- Aldrich [ppb]	DAMA Powder [ppb]	DAMA Crystal [ppb]
K	3.5 (18)*	100	~13
Rb	0.2	n.a.	< 0.35
U	$< 1.7 (< 10^{-3})**$	~ 0.02	$0.5 - 7.5 \times 10^{-3}$
Th	< 0.5 (< 10 ⁻³)**	~ 0.02	$0.7 - 10 \times 10^{-3}$

^{*} Independent measurement

^{**} Preliminary measurement at PNNL; full validation needed. Bernabei et al., NIM A592 (2008) 297-315

First Larger Crystal

- 2-kg crystal made out of Astrograde powder
- 88-mm diameter similar to final crystals
- Good scintillation properties
- $\langle Rb \rangle < 0.1 \text{ ppb (DAMA} < 0.35 \text{ ppb)}$

³⁹ K [ppb]	Seastar	PNNL	DAMA
A	9 ± 1	10.0 ± 0.7	
В	7 ± 1	9.1 ± 0.3	
D	11 ± 1	9.7 ± 0.4	
E	9 ± 1	9.8 ± 0.4	
Average	9	9.6	13

Improved Performance

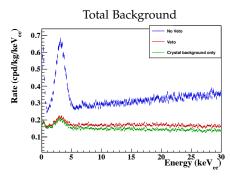
Higher light yield, lower threshold

- PMTs directly coupled to crystal
- Pre-amplifier developed at LNGS to suppress afterglow coincidence rate

Improved PMTs

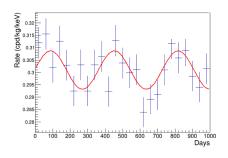
- \bullet High quantum efficiency: \sim 35 %
- \bullet Low radioactivity: ~ 1 mBq U, Th, Co; ~ 10 mBq K
- Further improvements in development
- Development by Hamamatsu in collaboration with Princeton

Two Locations: Northern and Southern Hemisphere


- $\bullet \sim 3000$ m.w.e shielding at both locations
- Twin detectors for optimum comparability
- Both detectors will run in parallel

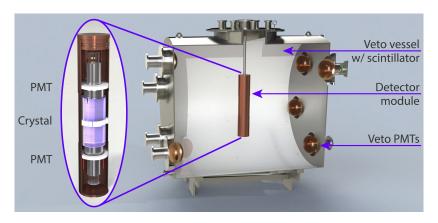
Conclusions

Background Expectations


Crystals Crystals Total with veto Rb (upper limit) crystals others other backgrounds Energy (keV)

Expectations

Sensitivity


Sensitivity

- 3 years stable detector operations
- No other seasonal effect in ROI (2-6 keV_{ee})
- 50 kg NaI(Tl) array
- 0.15 cpd/kg/keV total background in ROI
 - \Rightarrow 6 σ to refute modulation
 - $\Rightarrow 4\sigma$ to verify modulation

SABRE North: Proof of Principle

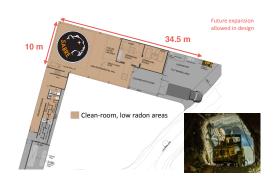
- Proof-of-Principle: 5.5-kg ultra high-purity NaI(Tl) crystals
- ϕ 1.4 × 1.5 m veto filled with pseudocumene + PPO
- Additional water / lead / polyethylene shielding around the veto

Proof of Principle

Coal

- Measure impurity levels of first high-purity crystal(s)
- Determine effectiveness of veto

Status


- Many components available
- Commissioning of vessel in Princeton completed, delivered to LNGS
- Preparations at LNGS in progress

Stawell Underground Physics Laboratory (SUPL)

- First underground lab in southern hemisphere
- $\bullet \sim 240$ km west of Melbourne
- Decline gold mine
- Site 1.02 km deep (~ 3 km.w.e. similar to LNGS)
- Electricity & optical fibre available
- Can be reached by truck/car
- Clean room design similar to SNOLab
- Construction started; expected to finish in late 2017

Collaboration

Adelaide University Australian National University Swinburne University University of Melbourne

LNGS & GSSI INFN Rome University of Milano & INFN

Imperial College London

LLNL PNNL Princeton University

Conclusions & Outlook

Conclusions

- WIMP interpretation of DAMA modulation signal in tension with other experiments
- Independent NaI(Tl) experiments needed ⇒ SABRE
- Ultra high purity NaI(Tl) in preparation ⇒ first breakthrough!
- Low background with high purity materials and active veto
- High light yield & lower threshold due to improved, pre-amplified PMTs directly coupled to crystal

Outlook

- First high-purity NaI(Tl) crystal grown
- Proof of principle at LNGS in preparation
- Full-scale twin detectors in preparation at LNGS (Italy) and SUPL (Australia)