Measuring v_{μ} and \overline{v}_{μ} oscillation parameters with MINOS

Justin Evans, University College London

Fermilab Users' Meeting 2nd—3rd June 2010

Introduction

Neutrino oscillations

- Two mass splittings
- Three mixing angles

MINOS can make precision measurements with neutrinos

- Largest mass splitting
- \triangleright Mixing angle θ_{23}

Corresponding antineutrino parameters are much less precisely known

- No direct precision measurements exist
- MINOS will be the first

A difference between the two would be very interesting

- Non-standard interactions
- CPT violation

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

The MINOS experiment

Beam neutrinos pass through two detectors

Detectors are magnetized to 1.3 T

- Allows the measurement of particle charge sign
- Also allows measurement of particle momenta

Two detectors to mitigate systematics

- e.g. neutrino flux or cross section mismodelings
- Use measured near detector data to predict what should be observed at the far detector before oscillations
- \triangleright An observed v_{μ} deficit at the far detector tells us about the oscillation parameters

Beam composition

Charged current interactions in the near detector

- > 91.7% v_{μ}
- \rightarrow 7.1% $\overline{v_{\mu}}$
- \triangleright 1.3% v_e + \overline{v}_e

 v_{μ} and \overline{v}_{μ} energy spectra are significantly different

 v_{μ} spectrum peaks at 3 GeV

Near the region of most oscillations

 $\overline{v}_{\!\scriptscriptstyle \prime\prime}$ spectrum peaks at 8 GeV

- > Away from the oscillation region
- Reducing the sensitivity to oscillations

Why are the spectra different?

- ν_{μ} spectrum is dominated by focused high-p_T pions
- Majority of \overline{v}_{μ} come from low-p_T pions which travel down the centre of the horns where there is no magnetic field

2nd June 2010

*UCL

MINOS event topologies

CC v_{μ} event selection

Aim to separate charged and neutral current v_{μ} interactions Four variables combined using a k-nearest-neighbour algorithm

- > Track length
- Mean signal in track planes
- > Transverse track profile
- Signal fluctuation along the track

CC v_{μ} beam extrapolation

Use the measured ND energy spectrum to predict the FD spectrum:

Spread of pion decay directions smears neutrino energies

Different energy spectra at the two detectors

Encode the pion decay kinematics into a beam transfer matrix

Convert ND to FD spectrum

Systematic uncertainties

Far detector data

FD data not looked at until the analysis was finalised

Expected 1065 ± 60 with no oscillations

Observed 848 events

Energy spectrum fit with the oscillation hypothesis

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2(2\theta) \sin^2\left(\frac{1.27\Delta m^2 L}{E}\right)$$

Reconstructed neutrino energy (GeV)

Allowed region

Constrained fit

- Δm^2 | =(2.43±0.13)x10⁻³ eV² (68% C.L.)
- \rightarrow sin²(2 θ_{23}) > 0.90 (90% C.L.)
- $> \chi^2/N_{DOF} = 90/97$

Unconstrained fit

- \rightarrow $|\Delta m^2| = 2.33 \times 10^{-3} \text{ eV}^2$
- $> \sin^2(2\theta_{23}) = 1.07$
- \rightarrow $\Delta \chi^2 = -0.6$

Alternative models

Decay:

Two alternative disappearance models are disfavoured

Reconstructed neutrino energy (GeV)

$$P_{uu} = \left(\sin^2(\theta) + \cos^2(\theta) \exp(-\alpha L/2E)\right)^2$$

V. Barger et al., PRL82:2640(1999) $\chi^2/\text{ndof} = 104/97$ $\Delta\chi^2 = 14$

disfavored at 3.7σ

Decoherence:

$$P_{\mu\mu} = 1 - \frac{\sin^2 2\theta}{2} \left(1 - \exp\left(\frac{-\mu^2 L}{2E_v}\right) \right)$$

G.L. Fogli et al., PRD67:093006 (2003)
$$\chi^2/\text{ndof} = 123/97$$
 $\Delta\chi^2 = 33$

disfavored at 5.7σ

The future

MINOS has doubled its dataset

New results will be released this summer.

We are also incorporating analysis improvements

Using events outside the fiducial volume

Interactions in the detector and surrounding rock

Adding in events with poorly measured charge

> Recovers around half the events at low energy

A new selection variable optimized for low energies

Grouping events according to their resolution

New hadronic shower energy estimator

- Based on a k-nearest-neighbour technique
- Significantly improves shower energy resolution

These improvements can increase our Δm^2 sensitivity by 15%

Selecting \overline{v}_{μ}

Selecting events with a track reconstructed with positive charge

We must work harder to select a pure sample of $\overline{v_u}$ events

They are only 7% of all our CC events

Large backgrounds from other event-types

- ightharpoonup Mis-identified CC- v_{μ} with wrong charge sign
- NC events where another particle fakes a track

Three additional selection criteria are used

All events with a positive curvature track

MINOS Preliminary

Selecting \overline{v}_{μ}

Events

103

20

-- 2.9 ×10²⁰ POT

Near Detector

MC w/ flux error

MC background

NC component Mis-ID v., CC

Data

CC/NC separator

- Likelihood-based with 3 probability density **functions**
- Removes both NC and mis-identified CC events

Track fit charge sign significance

Relative angle

Selecting \overline{v}_{μ}

After all selection cuts:

Far detector

- > Efficiency of 82%
- Contamination of 3%

Optimized for physics sensitivity to oscillations with neutrino best fit parameters

Lower contamination is possible but at the cost of efficiency

\overline{v}_{μ} far detector spectrum

Observe 42 \overline{v}_{μ} -CC events at the far detector

First direct observation of \overline{v}_{μ} in an accelerator long-baseline experiment

Predicted events with oscillations with the best-fit neutrino oscillation parameters

> 58.3 ± 7.6 (stat.) ± 3.6 (syst.)

Predicted with no oscillations

 \rightarrow 64.6 ± 8.0 (stat.) ± 3.9 (syst.)

- Feldman-Cousins contour, including systematics
- Null oscillation hypothesis excluded at 99%
- Previously allowed regions excluded at high confidence
- Allowed region from the v_{μ} measurement is within the 90% contour

Dedicated \overline{v}_{μ} running

MINOS has now taken data with a dedicated \overline{v}_{μ} beam

- By reversing the current in the focusing horns
- From October 2009 to March 2010

Significantly enhances the \overline{v}_{μ} flux in the oscillation signal region

Dedicated \overline{v}_{μ} running

- We will make the first ever precision measurement of the \overline{v}_{μ} oscillation parameters
- Significantly reduce the uncertainty on $\Delta \overline{m}^2$
- Results will be released this summer

Summary

MINOS has made the world's most accurate measurement of the atmospheric neutrino mass splitting

- \rightarrow $|\Delta m^2| = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2 (68\% \text{ c.l.})$
- \Rightarrow sin²(2 θ_{23}) > 0.90 (90% c.l.)

Alternative models disfavoured

 \triangleright Decay at 3.7 σ , decoherence at 5.7 σ

First direct detection of \overline{v}_{μ} in an accelerator long-baseline experiment

A new measurement of the v_{μ} oscillation parameters will be released this summer

- Double the dataset
- Analysis improvements

MINOS has taken data with a dedicated antineutrino beam

- The first precision measurement of the $\overline{v_{\mu}}$ oscillation parameters
- Results will be released this summer

Backup

22

Measuring oscillations

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{E}\right)$$

Near detector measures the energy spectrum before oscillations occur At the FD we see an energy-dependent deficit due to oscillations

- ightharpoonup Position of the dip give Δm^2
- \triangleright Depth of dip gives $\sin^2(2\theta)$

An alternative disappearance model (e.g. decay or decoherence) would give a different energy-dependence

CC/NC separator

Likelihood-based with 3 Probability Density Functions:

- > Track length
- Pulse height fraction in track
- > Pulse height per plane

Use CC/NC separation parameter developed for previous analyses

Cut removes both NC and mis-identified v_u CC events

Mis-ID v_{μ} CC events tend to be inelastic events where the muon is obscured by a large hadronic shower

high-y events

Errors that are the same as the v_{μ} analysis

- Normalization: ±4%
 Relative reconstruction eff., detector livetime and mass
- Muon energy: range ±2%, curvature ±4% (Error from curvature increased slightly due to exiting tracks)
- \triangleright Beam extrapolation: 1σ error band from beam fit
- > Relative shower energy: ±3%
- > Absolute shower energy: ±10%

Errors that are specific for this analysis

- Decay pipe production
- > Background: ±50%