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What is Dark Matter?

“Cold Dark Matter: An Exploded View” by Cornelia Parker



The Dark Matter Questionnaire

Mass
Spin
Stable?
Yes No
Couplings:
Gravity

Weak Interaction!?
Higgs!?
Quarks / Gluons?
Leptons!?
Thermal Relic?
Yes No



Map of DM-SM Interactions
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Collider Searches WIMPs
X

Indirect Detection

Photons

Anti-matter

Gamma Rays

Ultimately, we need to fill out the
questionnaire experimentally.
But as we try to relate the results
of experiments to one another and
unravel the deeper theoretical
underpinning, we need at least
some kind of theoretical framework
in which to cast our progress.
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What could the theory be?
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The Most Complete Theory

On the “complete” end of the spectrum
is our favorite theory: the MSSM.

Reasonable phenomenological models
have ~20 parameters, leading to rich and
varied visions for dark matter.

This plot shows a scan of the pMSSM’
parameter space in the plane of the
WIMP mass versus the Sl cross section.

— XENON1T Excluded by DD and ID
Survives DD, ID, and LHC Excluded by ID but not DD
e Excluded by LHC but not DD or ID Excluded by DD but not ID

The colors indicate which (near) future
experiments can detect this model: LHC
only, Xenon |ton only, :

, or

R - og1 (pb)

It is clear that just based on which
experiments see a signal, and which
don’t, that there could be (potentially
soon) suggestions of favored parameter
space(s) from data.

m(x}) (GeV)



The Most Complete Theory

On the “complete” end of the spectrum
is our favorite theory: the MSSM.

Reasonable phenomenological models
have ~20 parameters, leading to rich and
varied visions for dark matter.

This plot shows a scan of the pMSSM’
parameter space in the plane of the
WIMP mass versus the Sl cross section.

The colors indicate which (near) future
experiments can detect this model: LHC
only, Xenon |ton only, ,

, or can’t be discovered.

It is clear that just based on which
experiments see a signal, and which
don’t, that there could be (potentially
soon) suggestions of favored parameter
space(s) from data.

Cabhill-Rowley et al, 1305.6921
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Simplified Models

Moving away from complete theories, we
come to simplified models.

These contain the dark matter, and some
of the particles which allow it to talk to the
SM, but are not meant to be complete
pictures.

As a simple example, we can look at a
theory where the dark matter is a Dirac
fermion which interacts with a quark and a
(colored) scalar mediating particle.

Limit on 9y~ Ur Model

There are three parameters: the DM mass, 4

the mediator mass, and the coupling g.
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These are like the particles of the MSSM,
but with subtle differences in their
properties and more freedom in their
interactions.

Just like the MSSM was one example of a
complete theory, this is only one example 900 o000
of a “partially complete” one.




Simplified Models

Moving away from complete theories, we
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fermion which interacts with a g
(colored) scalar mediating partic

WIMP-Nucleon Cross Section [cm?]
5 35 3 S

<
'S

20 30 40 50 100 200 300 400
WIMP Mass [GeV/c’]

DM

There are three parameters: the Ciiiass,
the mediator mass, and the coupling g.

rong

o
w
o0

o
w
Upper Limi

i % E
! ' =
0 -5 £
o 22 g
\ -' g
) IR . == 3
A i 2 =
o H -
5
20 A
t| 000000 - - - <- - - .
u S 200 400 600 800 1000 1200
mg [GeV/c?]

comp %00 (601\9)00
of a “partially complete” one.



Contact Interactions

In the limit where the mediating particles
are heavy compared to all energies of
interest, we are left with a theory
containing the SM, the dark matter; and
nothing else.

The residual effects of the mediators are
left behind as what look like non-
renormalizable interactions between DM

and the SM.
X
@

These are the simplest and least complete

description of dark matter we can imagine.

For any particular choice of interaction
type, there are two parameters: the DM
mass and the strength of that interaction.
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Contact Interactions

In the limit where the mediating particles
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Lepton/Gluon Interactions
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LUX sees a handful of
elastic scattering events

consistent with a DM
mass < 200 GeV.
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gamma ray line at 150
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center.
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2015

Two LHC experiments
see a significant excess of
leptons plus missing
energy.

Xenon sees
a similar signal.
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A Possible Timeline

LUX sees a handful of
elastic scattering events

consistent with a DM
mass < 200 GeV.

Two LHC experiments *
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. Mass: |50 +/- |15 GeV
. Spin: >0
{ ]
° Stable?

A positive signal of axion
conversion is observed at
an upgraded ADMX.

J Couplings:
0 Gravity
Weak Interaction?
Higgs?
Quarks / Gluons
Leptons

Thermal Relic?

b °
e Fermi observes a faint .
e gamma ray line at 150
e GeV from the galactic

[ ]
center. o

Mass: 20 peV
Spin: 0
Stable?

Couplings:
Gravity
Photon Interaction
Higgs?
Quarks / Gluons?
Leptons?

Thermal Relic?



2013 A Possible Timeline

you
MRE
WERE

pANE

Mass: 150 +/- 0.1 GeV
Spin:> 0
Stable?
Couplings:
20 I 5 Gravity
Weak Interaction?
Higgs?
20 I 6 Quarks / Gluons

Leptons

Thermal Relic

2017

A positive signal of axion
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A multi-pronged search strategy identifies a mixture of
dark matter which is 50% classic WIMP and 50% axion.

A positive signal of axion
conversion is observed at
an upgraded ADMX.
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Outlook

Putting together a detailed particle description of dark matter will
necessarily involve many experimental measurements.

Important details such as the mass and spin will hopefully come along as
part of that program.

The three traditional pillars of dark matter searches: direct, indirect, and
collider, naturally probe different parts of the space of DM-SM couplings.

® They are highly complementary to one another in terms of discovery
potential.

® Together they can probe a large fraction of the space of interesting
WIMP models in the near future.

® |nput from all of them is likely to be necessary to reconstruct enough of
the couplings to be able to firmly understand the dark matter relic
density.

“ Oh? or bust! ”



