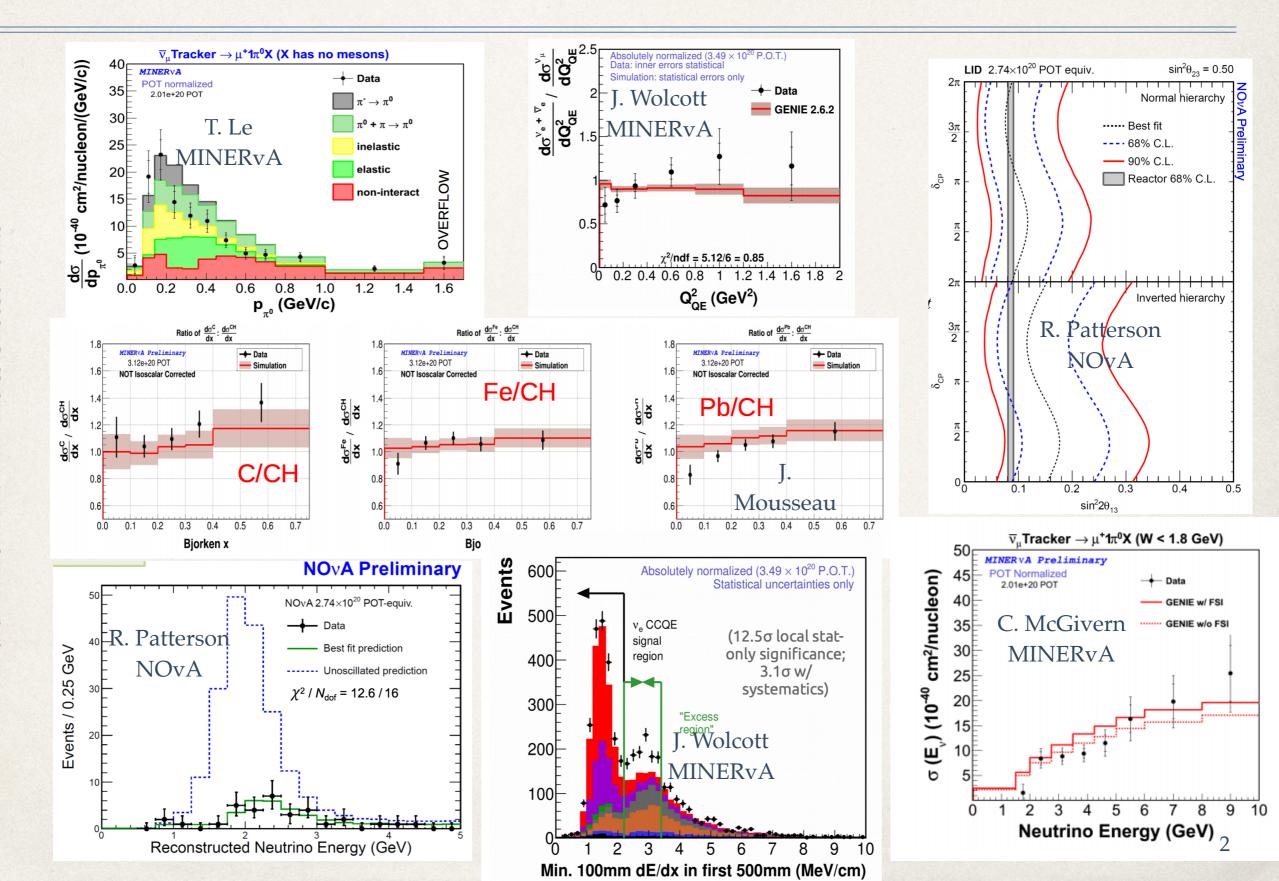
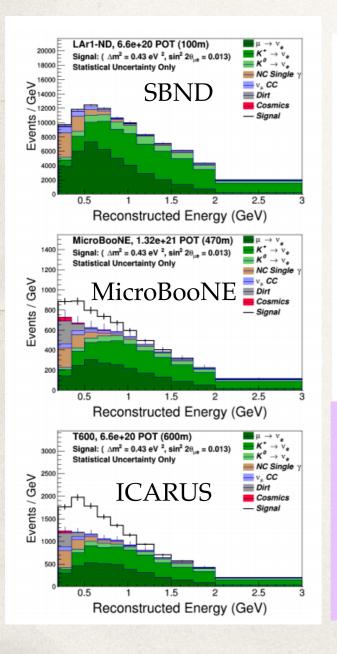
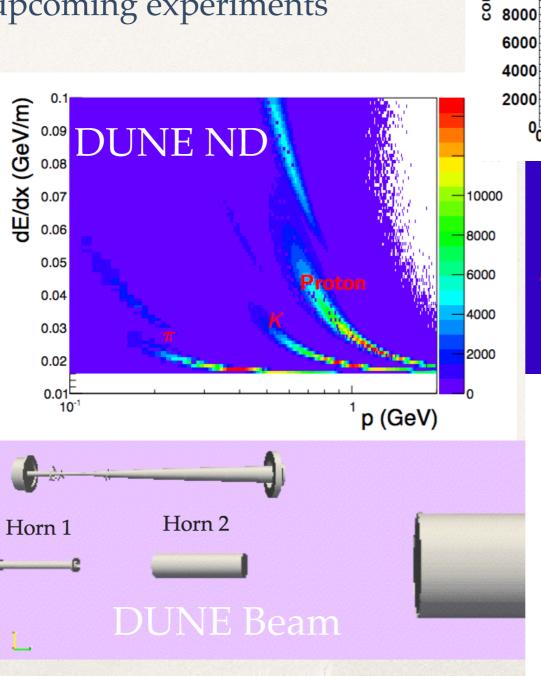
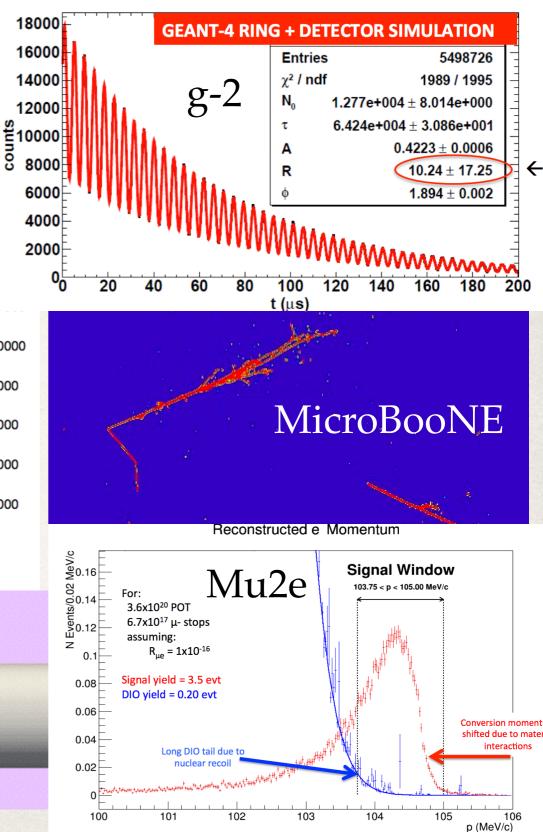
R. Hahn


Fermilab Main Injector Tunnel

Intensity Frontier Geant4 Requirements


Laura Fields Fermilab

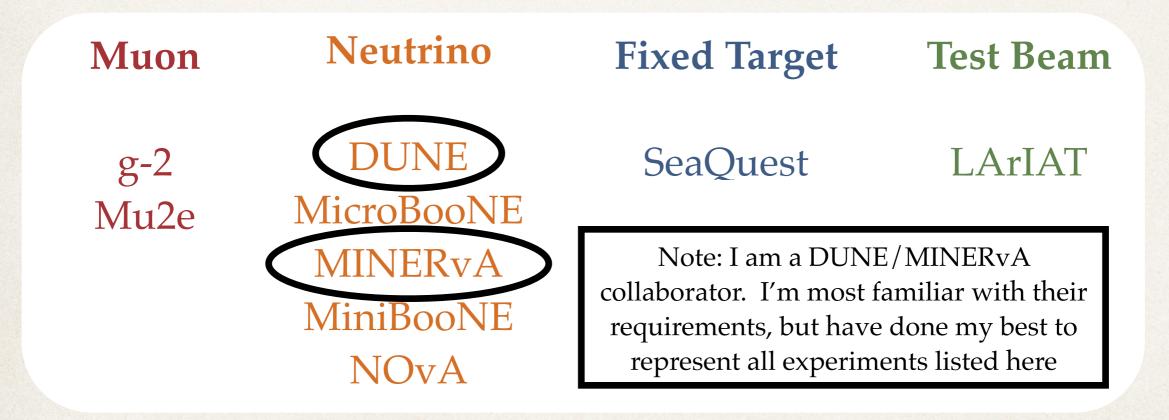

First of All: Thank You!



First of All: Thank You!

Geant 4 is also giving us an unprecedented ability to design and understand the capabilities of upcoming experiments

Introduction


- Geant 4 is clearly working very well for the Intensity Frontier
- * This talk is a list of requests that would make it work even better
- Experiments who have provided input:

Muon	Neutrino	Fixed Target	Test Beam
g-2	DUNE	SeaQuest	LArIAT
Mu2e	MicroBooNE MINERvA		
	MiniBooNE		
	NOvA		

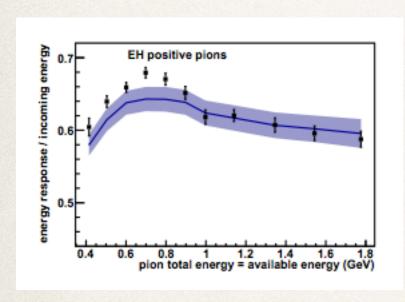
^{*} These experiments have contacted me or the FNAL Geant4 team. Other intensity frontier experiments were not intentionally excluded and will be contacted by the FNAL Geant4 team in the future

Introduction

- Geant 4 is clearly working very well for the Intensity Frontier
- * This talk is a list of requests that would make it work even better
- Experiments who have provided input:

* These experiments have contacted me or the FNAL Geant4 team. Other intensity frontier experiments were not intentionally excluded and will be contacted by the FNAL Geant4 team in the future

Priority Physics Processes


- * Physics processes of importance to Intensity Frontier
 - * Of general importance:
 - * Hadronic showers in the range of ~10 MeV to ~10 GeV
 - Key to neutrino energy reconstruction
 - * Low energy electromagnetic showers
 - Cosmic rays: High energy to a few MeV
 - Backgrounds to surface detectors
 - * Muon and antimuon separation in the absence of a magnetic field
 - Key to separating neutrino background in antineutrino beams
 - Muon spin tracking and polarization at point of decay
 - Muon-nuclear interactions
 - Antiproton production in proton beams

Priority Physics Processes

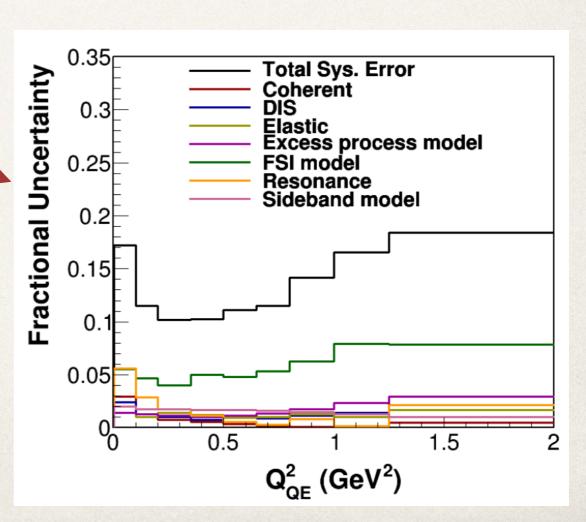
- Physics processes of importance to Intensity Frontier
 - Of particular interest to Liquid Argon detectors:
 - * Particle ID via dE/dx in liquid Argon
 - * Proton stopping and dE/dx profiles in liquid Argon
 - Simulation of interplay between ionization and scintillation light
 - * Pion and kaon ID utilizing specific interaction and decay modes

Systematic Uncertainties

- It is important that Geant4 simulate physics processes precisely
 - * But equally important: an estimate of uncertainties on geant4 simulations and an ability to propagate these to physics measurements

MINERvA testbeam measurement of pion response compared to Geant4

- This is currently done experiment-by experiment, comparing key features of Geant4 simulation to external data
- Disadvantages:
 - Each experiment is reinventing the wheel
 - * We are almost certainly underestimating geant4-related uncertainties
 - Comparisons typically take years -> makes upgrading to new versions extremely difficult (IF collaborations are often small!)


Systematic Uncertainties

- * Our request to you: **tools for propagating uncertainties** in Geant4 model parameters to measurements:
 - * At a minimum: enable tunable model parameters so that users can estimate how much changing parameters changes physics results
 - * Our ultimate dream: a set of parameters, knob turns, and correlations that we can use to estimate a full Geant4 error band on our results, a la GENIE

GENIE-related and total systematic uncertainties on MINERvA's ν_e CCQE measurement

Very straightforward for new students to use

But never used for final results without considering whether further uncertainties should be assessed

Systematic Uncertainties

* A key point about systematic uncertainties

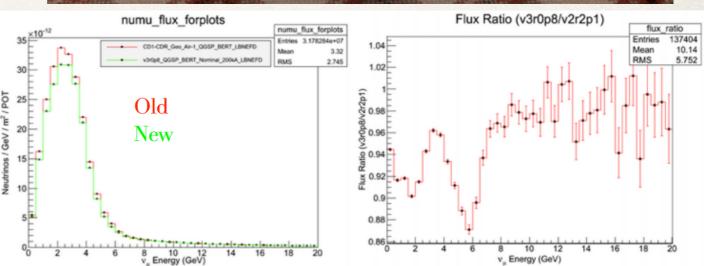
- One reason that GENIE's systematic uncertainties have been so successful is that most of them are reweightable
- We can estimate uncertainties on parameters by reweighing a single Monte Carlo sample
- * This may not be feasible for most Geant uncertainties
 - But I encourage you to consider whether some parameters are reweightable
 - There is a vast difference in usability between reweightable and nonreweightable parameter uncertainties
- Non-reweightable parameters are still much better than nothing!
- Another option:
 - * A large set of data/MC comparisons with G4 recommended error bands

Custom Features

- * Another request related to variable model parameters:
 - "Custom features" e.g. the ability to insert a cross sections extracted from data at key points in the simulation
 - Hopefully not necessary in most cases, but occasionally useful
 - When an experiment is stuck using an old version
 - * When some **small corner of phase space** is particularly important to a measurement

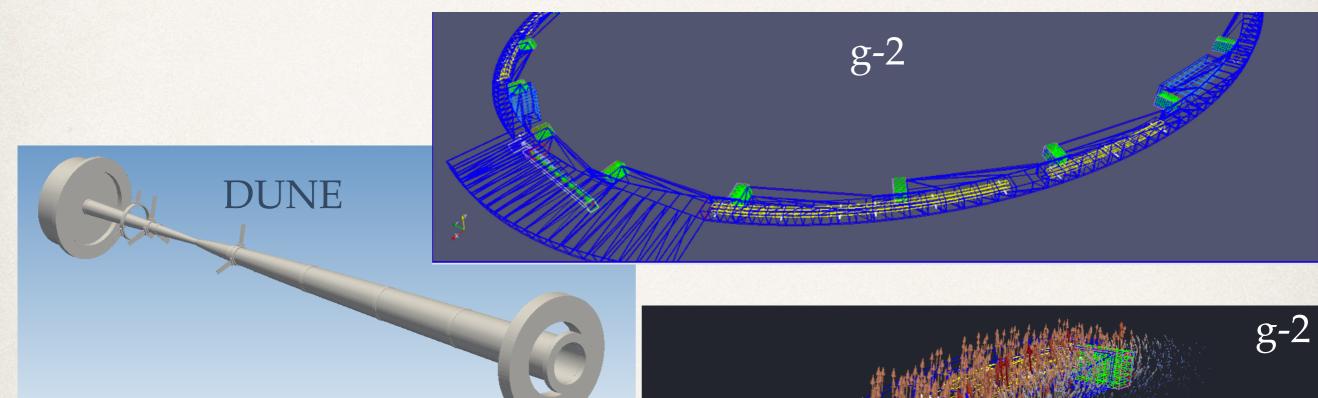
Advice on Physics Lists

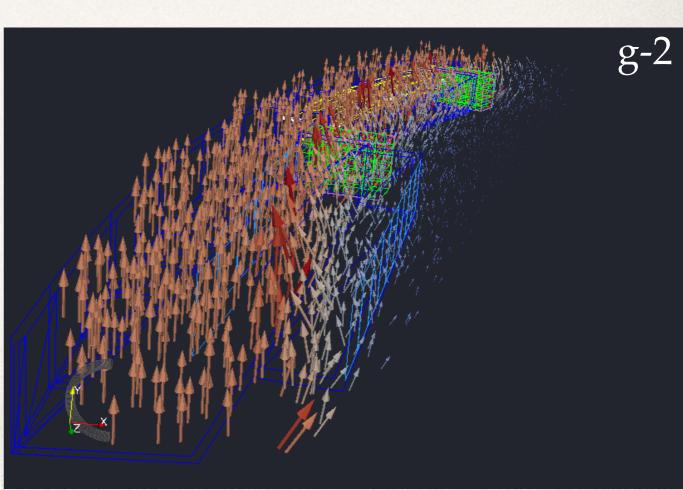
- Other general requests:
 - * Advice on physics list choice:
 - * Short term: Validation of current physics list in phase space of interest to IF experiments
 - * An area of importance: overlap regions between models
 - * Longer term: Development of **new physics lists** designed for intensity frontier needs
 - * Also: guidance on constructing custom physics lists and configurations that can be shared across experiments


Version Validation

- Other general requests:
 - * Validation of new versions of Geant4
 - * Clear communication about what changes we should expect to see
 - * Ideally: tools to understand differences between any two versions (not just incremental changes of each release)
 - Please keep old versions of Geant4 available even if you are no longer supporting them
 - Extremely important when updating older published results

Geometry Validation


- Tools for validating and comparing geometries
- Also very important: ensuring that the geometry you want is the geometry you have implemented
- * Particularly critical for neutrino beam simulations, where very subtle differences in geometry can produce big differences in neutrino flux predictions
- Visualizations are our main tool (e.g. HepRApp, Paraview, OpenInventor), but freuqently work on some platforms but not on others (OSX, SL6)
- Cross checking with other simulations (e.g. MARS) also very helpful, but differences in GDML writers/readers have slowed these efforts



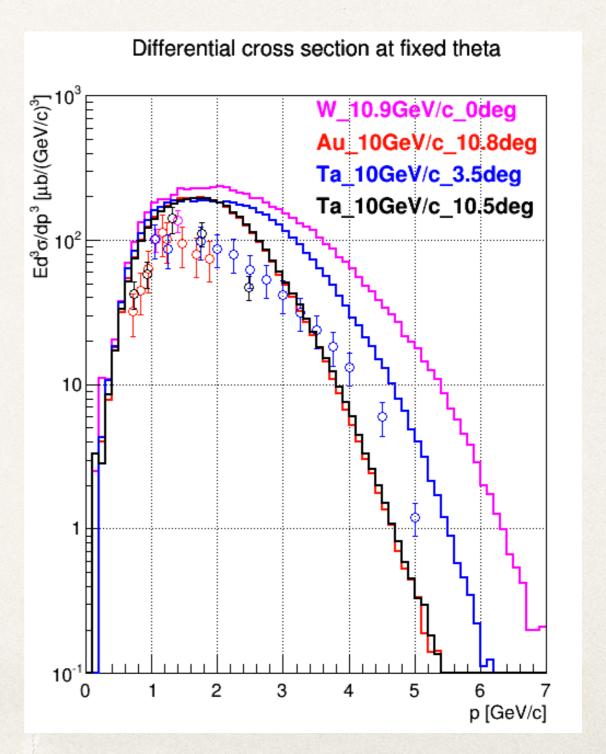
Geometry Validation

A tool that has proven useful to Intensity Frontier Experiments: Paraview

- Made with GEANT heprep output using Paraview + Geanttovtk Plugin
- Not well validated on non-Mac platforms

MicroBooNE Requests

- * Guidance on using Geant4.10.1's multi-threaded capabilities
 - When you have a machine with N processing queues, how many jobs should be submitted?
 - * N? N/X (X = ?)? 1, and let G4 populate the cores?
 - Event if the answer depends on the use case, guidance is still needed
- Advice on using G4Py
 - Would like to use for "quick and dirty" simulations on laptops
 - But installation on laptops is currently difficult


A g-2 Request

- * A crucial component of simulation for g-2: decay of particles with spin
 - Requests:
 - More emphasis on spin aspects of decay
 - * Easier to enable decay w/ spin in simulations
 - Fix to two bugs in G4DecayWithSpin reported in Bugzilla report 1783 (http://bugzilla-geant4.kek.jp/show_bug.cgi?id=1783)
 - Experiment is currently working on designing and understanding detectors — spin issues not critical here
 - But absolutely vital for eventual analysis

A Mu2e Request

Improved simulation of antiproton production by proton beam

- Proton beam induced antiproton production; Geant4 9.6.p03 (FTFP_BERT) simulation compared to data from various experiments (Data compiled by S. Striganov; Geant4 simulation by Z. You)
 - Amann et al 0 degree, 1 and 1.4 GeV/c, tungsten, 10 GeV/c
 - Sibirtsev et al 3.5 degree, 1.25 5 GeV/c, tantalum, 10 GeV/c
 - Barabash et al 10.8 degree, 0.72-1.85 GeV/c, gold, 10 GeV/c
 - Averichev et al 61 and 90 degree, 0.5 GeV/c, lead, 8.9 GeV/c
 - Boyarinov et al 97 and 119 degree, 0.6-1.207
 GeV/c, tantalum, 10 GeV/c
 - Kiselev et al 10.5 and 59 degree, 0.58-2.5 GeV/c, tantalum, 10 GeV/c

Conclusion

- Geant4 is helping the intensity frontier to do great things!
 - We really cannot thank you enough!
- Our simulations cover a huge array of phase space
- In many cases, our needs are quite different than that of the energy frontier
- Some of our key requests to you:
 - * Physics lists validation and development focused on the intensity frontier
 - * A framework for evaluating systematic uncertainties
 - Assessing uncertainties on a model is just as important as having an accurate model

Thank you for listening!

The End

A Mu2e Request

- Improved simulation of antiproton production by proton beam
 - One of the larger background sources are antiprotons which can enter the fiducial area, annihilate and produce electrons with the momentum in the signal window
 - Plot on next page right shows comparison of proton beam induced antiproton production from various experiments with Geant4 simulations
 - Simulation was performed using FTFP_BERT physics list
 - The Geant4/data ratio of differential cross section is between 1.3 and 3
 - Given the impact and importance of the antiproton background the request would be to improve the agreement of the simulation with the data

Details on GDML File Conversion

MARS -> GDML -> Geant4 Conversion Problems

- Various volumes flipped
- Many material densities set to 1 g/cm3
- Attempting to produce heprep file caused jobs to hang

Details on GDML File Conversion

Geant4 -> GDML -> MARS Conversion Problems

- GDML->Root conversion produced warnings
- Last 100 cm of horn 1 missing
- Could likely have been solved with more iterations, but time constraints necessitated implementing the geometry in root directly
- Problems not seen with similar conversion for BNB beamline simulation (simpler geometry than DUNE)