

Results from the The Pierre Auger Observatory Paolo Privitera

Department of Astronomy & Astrophysics The Enrico Fermi Institute The Kavli Institute for Cosmological Physics

for the Pierre Auger Collaboration

The UHECR 3-piece puzzle

1) The Greisen -Zatsepin-Kusmin cutoff:

3) The UHECR composition: protons? Heavier nuclei (deviation in magnetic fields)

END TO THE COSMIC-RAY SPECTRUM?

Kenneth Greisen

Cornell University, Ithaca, New York (Received J April 1966)

This note predicts that above 10^{20} eV the primary spectrum will steepen abruptly, and the experiments in preparation will at last observe it to have a cosmologically meaningful termination.

2) The UHECR sources:

Close-by astrophysical accelerators? Exotic Physics?

Only by understanding all of the three pieces we will unveil the true nature of UHECR **The Pierre Auger Observatory**

Argentina, Mendoza, Malargue 1.4 km altitude, 870 g/cm²

Argentina Australia Bolivia* Brazil Czech Republic France Germany Italy

Mexico
Netherlands
Poland
Slovenia
Spain
United Kingdom
USA
Vietnam*

1600 water Cherenkov detectors,

1.5 km spacing, 3000 km²,

4 x 6 fluorescence telescopes

The Auger hybrid detector concept

300-400 nm light from de-excitation of atmospheric nitrogen (fluorescence light) ≈ 4 γ's / m /electron

 $10^{19} \,\mathrm{eV} \longrightarrow 10^{10} \,\mathrm{e}$

Surface Detector

- Shower size ≈ E
- Time ≈ direction
- 100% duty cycle

Fluorescence Detector

- E + longitudinal development
- Time ≈ direction
- ≈ 10% duty cycle

Trigger efficiency Energy-direction calibration, syst. uncertainties

Auger Surface Detector

Overall tank array efficiency ~95%!

The tanks works like an "integrating sphere"

Time response for a single muon ~ 60 ns

AUGER SD in action ~ 70 EeV

Spherical surface camera 440 PMT with light collectors Large 300x300 field of view 1.5° pixel fov (spot 1/3 of pixel)

The

The Auger 'hybrid' detector

Atmospheric Monitoring

SD Energy Calibration

The power of hybrid.....
We DO NOT rely on shower simulation!

SD Energy resolution better than 20%

Auger Energy Spectrum

- high statistics (100% duty cycle)
- 100% efficient above 3·10¹⁸ eV over the whole array

Surface and Hybrid fluxes consistent within uncertainties (10% FD and 6% SD)

- lower statistics due to 12% duty cycle
- efficiency function of shower's distance, atmospheric conditions, etc.
 Complex analysis
- measurement down to 1·10¹⁸ eV

Exposure

Surface Detector

Count active hexagons, sum their area

Fluorescence Detector

Auger Energy Spectrum

Phys. Lett. B 685 (2010) 239

4400 events above 10¹⁹ eV Only 3 above 10²⁰eV

Astrophysics and the Energy Spectrum

→ Composition & Anisotropy

→ Energy Scale

 $J_{
m source} \propto E^{-eta}$, $(1+z)^m$

16

November 9, 2007

Anisotropy of the UHECR sky

27 events $E > 5.7 \cdot 10^{19} \text{ eV}$

Science

Angular resolution < 1°

Strategy for anisotropy analysis

$$P = \sum_{j=k}^{N} {N \choose j} p^{j} (1-p)^{N-j}$$

Probability that k out of N events from an isotropic flux correlate by chance (AGN used to track extragalactic matter)

No a priori hypothesis on the characteristics of correlation, thus exploratory scan of relevant variables: angular distance (resolution and magnetic fields), AGN redshift (GZK cutoff), energy (magnetic field)

12/15 events correlated in the exploratory scan, 3.2 expected Difficult to estimate probability, thus confirmation required with an **independent data set**.

- Prescription 8/13 events found to correlate, P = 1.7 ·10-3
 - Null hypothesis (Isotropy of UHECR) rejected at 99% CL
 - Tantalizing large correlation (~70%) with extragalactic objects (traced by AGN)

Update on anisotropy

- Isotropy of UHECR rejected at 99% CL
- Correlation reduced from ~70% to ~40%
- naturecatalogue

Correlation with other Catalogues

Cross correlation with 2MRS galaxies catalogue

NOTE: a posteriori analyses, but providing additional information on anisotropy

Cen A.....

Closest (3.8 Mpc) powerful radio galaxy with characteristics jets and lobes, candidate for UHECR acceleration. Auger South.

Significance few %, but we keep collecting data......

UHECR Composition

 \rightarrow mean X_{max} and RMS(X_{max}) are sensitive to composition

Reconstructed longitudinal profiles

Unbiased reconstruction of X_{max}

- Ex: X_{max} must be in the field of view to be reconstructed. This could introduce a bias, for ex. by selecting deeper showers close to detector
- <u>Auger approach</u>: devise selection criteria which produce an unbiased X_{max} distribution

Monte Carlo Check

Lines corresponds to simulation input to the full detector MC: reconstructed MC data provide unbiased estimate of $\langle X_{max} \rangle$ and RMS(X_{max})

X_{max} resolution with stereo events

Measurement of the depth of maximum

3754 hybrid events

Phys. Rev. Lett., 1 March 2010, 104 091101 2010

RMS (detector resolution subtracted)

Measurement of the depth of maximum

RMS (detector resolution subtracted)

Examples of Systematic Checks

'Vertical' vs 'inclined' events

Examples of Systematic Checks

Agreement between hybrid and SD energy spectra: we are not missing events

Auger X_{max} measurements vs Models

NOTE: highest energy event $\sim 6.10^{19}$ eV (< onset of anisotropy)

Comparison (?) Auger vs HiRes

Muon content in UHECR

Search for UHECR photons

Auger North in Colorado

• 21,000 km²

- 4400 SD tanks
- 39 Fluorescence telescopes
- Full sky coverage
- > 200 events/year
- R&D array under construction

Auger north, 10 years

Auger south, 10 years

Auger North will provide the statistics to decipher the UHECR puzzle

Auger South enhancements

A rich physics program at lower energy is starting!

Outlook

- Two years of data of the Pierre Auger Observatory are already giving us novel insight into the UHECR puzzle:
 - flux suppression of UHECR unequivocally established (GZK?)
 - UHECR anisotropy at 99% CL (sources?)
 - Composition: intriguing results (Heavier? Models? Cross sections?). Muon content.
 - Exotic physics disfavored
 - One question has been answered: there is a flux suppression at the highest energies. The event rate is not AGASA like. Breakthrough?
 - Be patient (Auger South is just at the beginning of its decade of data taking)
 - Be brave (Auger North)

Auger vs HiRes

