

Energy deposition for intense muon sources (chicane + the rest of the front end)

Pavel Snopok
Illinois Institute of Technology and
Fermilab
May 19, 2015

Outline

- Introduction
- History
- Current MARS simulations
 - based on the hybrid channel ICOOL lattice
- Summary

Introduction

- In high-intensity sources muons are produced by firing high energy p onto a target to produce π.
- π decay to μ which are captured and accelerated.
- Significant background from p and \bar{e} , which may result in
 - heat deposition on superconducting materials;
 - activation of the machine preventing manual handling.

Introduction, contd.

- Need a secondary particle handling system for a megawatt class solid C target
 - solenoidal chicane
 - followed by a proton absorber.
- Challenges of optimization and integration of the system with the rest of the muon front end.
- Main study tool MARS, some analysis and validation by using ICOOL and G4beamline.
- Use the same technique to study the buncher/phase-rotator/cooler for the hybrid channel.

History: MARS simulations

- ROOT-based geometry
- 12.5° single bend, Z=0 corresponds to 19 m downstream of the target
 - consistent with RDR (IDS-NF).
- W density reduced to 60% to take into account packing fraction for beads.

Reference: no shielding

DPD peaks at 15.8 mW/g, that translates into 42.6 kW/m for Cu coils or 33.3 kW/m for SC coils.

Uniform 35 cm shielding

Empty channel

PD total, mW/g

Overall DPD per coil/segment

Segmented coil analysis, total DPD, mW/g

Average DPD per coil, mW/g

In both cases red line corresponds to 0.1 mW/g SC limit

Ongoing MARS simulations

- New target parameters:
 - -8 GeV => 6.75 GeV
 - -4 MW => 1 MW
 - 3.125e15 protons/sec => 0.925e15 protons/sec
 - new particle distribution
- New ICOOL lattice file
 - hybrid channel
- Looking downstream of the chicane
 - buncher
 - phase rotator
 - matcher/cooler

MARS RF Challenge

- Stationary magnetic fields are straightforward...
- Time-dependent electric field in the RF cavities is not.
 - Ended up using a combination of the two user routines in MARS m1514.f intended for other purposes:
 - MFILL = meant for producing data for histograms, knows when a region boundary is crossed.
 - KILLPTCL = meant for killing particles under certain conditions, here one can change the energy/momentum of the particle
 - RF is a kick approximation (at the center of the cavity).
- Use MARS extended geometry, and while it is sufficient, ROOT geometry would be much more convenient given the length and regularity of the structure.

MARS RF, first results

- A few tracks running through buncher/rotator/cooler.
- Magnetic field is a field map imported from G4beamline.
- Tracks lose energy in absorbers and gain energy when they cross the center of a cavity.

 $y \ y:z = 1:1.542e+02$

y y:z = 1:1.088e+02

Other codes

- Once MARS lattice is up and running, the plan is to compare results with G4beamline/ICOOL energy loss calculations
- Back in 2010 I did a comparison of the two codes for IDR:

Summary

- Buncher/rotator/cooler are in MARS now.
 - More input on a more precise geometry for coils and cavities is appreciated.
- Kick approximation is used for RF cavities at the moment...
 - "workaround" style, something more straightforward and permanent would be good;
 - information on phasing is taken directly from ICOOL, no reference particle(s) tracking in MARS.
- MARS is the main tool, although G4beamline and ICOOL are also used for some analyses, could be used for validation.

Thank you!