LBNL/SLAC Ring and Lattice Issues

Yunhai Cai November 15, 2012

In collaboration with John Byrd, Alex Chao, Yuri Nosochkov, Uli Wienands, and Frank Zimmermann

Luminosity

• Bunch luminosity

$$L_b = f_{rev} \frac{N_b^2}{4\pi\sigma_x \sigma_y} R_h$$

where $R_{\rm h}$ is a geometrical reduction from the hourglass effect and is written as

$$R_h = \sqrt{\frac{2}{\pi}} a e^{a^2} K_0(a^2), a = \frac{\beta_y^*}{\sqrt{2}\sigma_z}$$

• Total luminosity

$$L = n_b L_b$$

Beam-Beam Limit

• Given the beam-beam parameter

$$\xi_{y} = \frac{r_{e}N_{b}\beta_{y}^{*}}{2\pi\gamma\sigma_{y}(\sigma_{x}+\sigma_{y})}$$

The luminosity can be re-written as

$$L = \frac{cI\gamma\xi_y}{2r_e^2I_A\beta_y^*}R_h$$

where I_A=17045 A. Smaller β_y^* is absolutely necessary. For example, in our design we have I=7.2 mA, E₀=120 GeV, ξ_y =0.07, R_h=0.76, β_y^* =1mm, gives 1x10³⁴ cm⁻²s⁻¹ in luminosity. So what is the beam-beam limit for Higgs factory?

LEP2 Experience

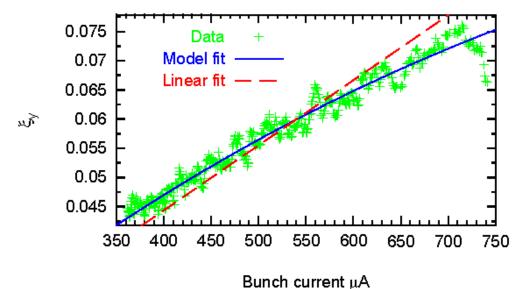


Figure 1: Measured ξ_y at 94.5 GeV versus bunch current. The data is fitted with ("Model fit") and without ("Linear fit") beam-beam limitation.

R. Assmann and K. Cornelis, Proceeding of EPAC 2000, Vienna, Austria

Power Limitation

• Synchrotron radiation

$$U_0 = \frac{4\pi}{3} \frac{r_e mc^2}{\rho} \gamma^4$$

• Beam power given by RF

$$P_b = U_0 I / e$$

• Limits the total beam current I

For example, $E_0=120$ GeV, $\rho=2.6$ km, $U_0=6.97$ GeV, I=7.2 mA, lead to $P_b=50$ MW in our design.

Scaling of Luminosity

 If there is a beam-beam limit as suggested by the simulation and beam power is also limited, the luminosity can be re-written as

$$L = \frac{3c}{8\pi r_e^3} \frac{\xi_y \rho}{\gamma^3 \beta_y^*} \frac{P_b}{P_A} R_h$$

where $P_A = mc^2 I_A/e = 8.7$ GW. This scaling was first given by B. Richter, Nucl. Instr. Meth. 136 (1976) 47-60.

Beamstrahlung Effects

• Beam lifetime due to large single photon emission (for 30 minutes, V.I. Telnov, 2012)

$$\frac{N_b}{\sigma_x \sigma_z} < 0.1 \eta \frac{\alpha}{3 \gamma r_e^2}$$

- Large RF-buckets and large momentum aperture η
- Large σ_z and $\sigma_x.$ Favors longer and larger horizontal beam size.
- Limits bunch population N_b

Are there any reasonable solutions?

Analysis of Design Constraints

• To achieve the beam-beam parameter and assuming $\beta_y = \kappa_\beta \beta_x$ and $\epsilon_y = \kappa_\epsilon \epsilon_x$ we have

$$\frac{N_b}{\varepsilon_x} = \frac{2\pi\gamma\xi_y}{r_e}\sqrt{\frac{\kappa_e}{\kappa_\beta}}$$

To have adequate beam lifetime (due to beamstrahlung)

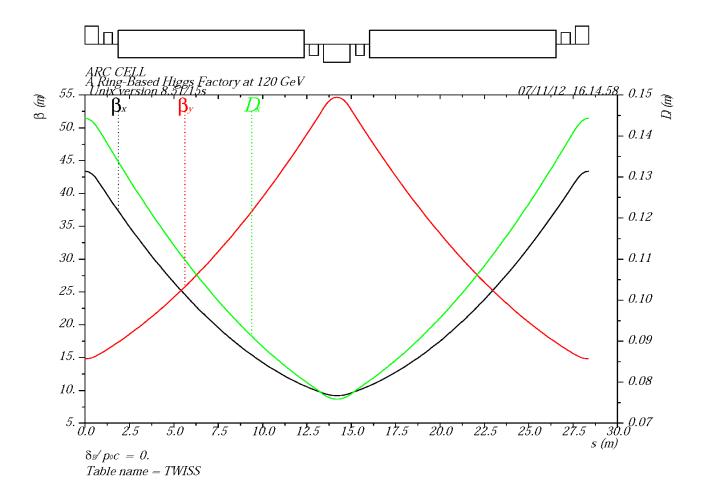
$$\frac{N_b}{\sqrt{\varepsilon_x}} < 0.1\eta \frac{\alpha \sigma_z}{3\gamma r_e^2} \sqrt{\frac{\beta_y^*}{\kappa_\beta}}$$

- Clearly, smaller coupling κ_{e} is better and larger momentum acceptance η is better but they have their own limits.

Solution of the Constraints

• Given a momentum acceptance η , we solve

$$\varepsilon_x < (\frac{0.1\eta\alpha\sigma_z}{6\pi\gamma^2\xi_y r_e})^2 \frac{\beta_y^*}{\kappa_e}$$

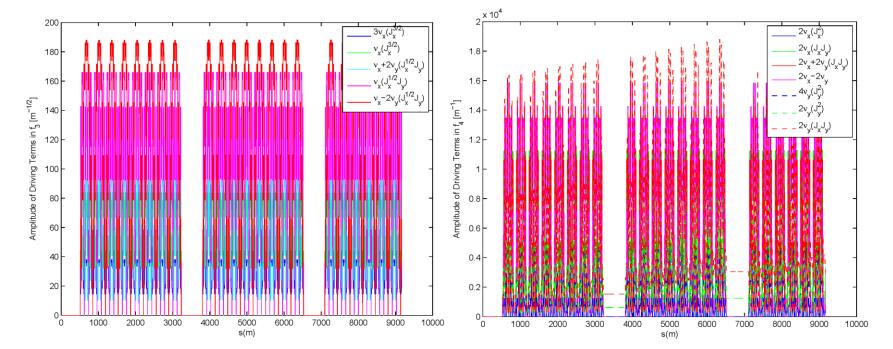

Note that it does not depends on κ_{β} . We can use κ_{β} to adjust the bunch population N_b or the number of bunches n_b. Clearly, there are many possible solutions. But is there any self-consistent one?

- The requirement of accommodating beamstrahlung is translated to design a low emttance lattice.
- Normally, the emittance scales as γ^2 . This relation requires a scaling of γ^{-4} , indicating a difficulty to design a machine with much higher energy than 120 GeV.

LBNL/SLAC Design Parameters

	LEP2	LBNL/SLAC Design
Beam Energy [GeV]	104.5	120
Circumference [km]	26.7	26.7
Beam current [mA]	4	7.2
Number of bunches	4	50
Bunch population [10 ¹⁰]	57.5	8.0
Horizontal emittance [nm]	48	4.3
Vertical emittance [nm]	0.25	0.0215
Momentum compaction factor	18.5x10 -5	2.4x10 ⁻⁵
β _x * [mm]	1500	50
β _y * [mm]	50	1
Hourglass factor	0.98	0.76
SR power [MW]	11	50
Bunch length [mm]	16.1	1.5
Beam-beam parameter	0.07	0.07
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	0.0125	1.01
11/15/2012	Yunhai Cai, HF2012 Workshop	10

90°/60° Arc Cell

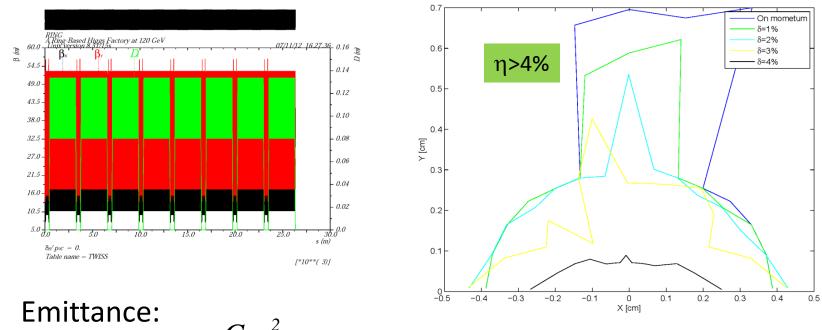


12 cells make an achromat (unit transformation).

Quasi (4th Order) Achromat

3rd order driving terms

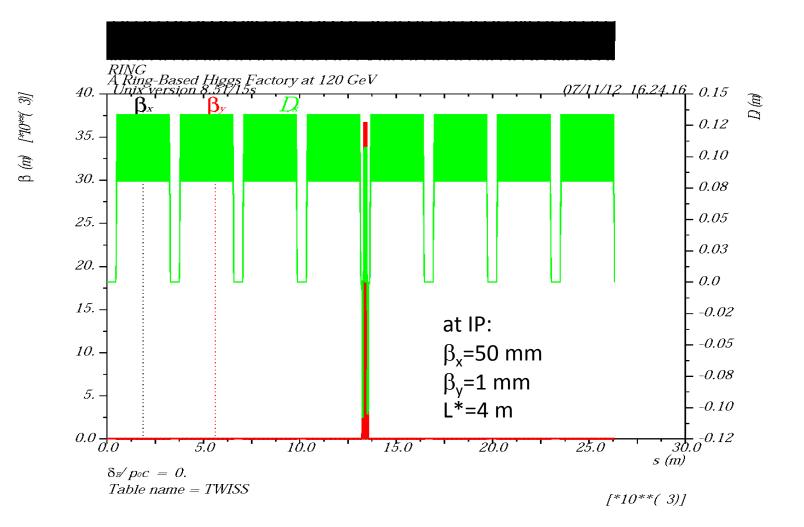
4th order driving terms

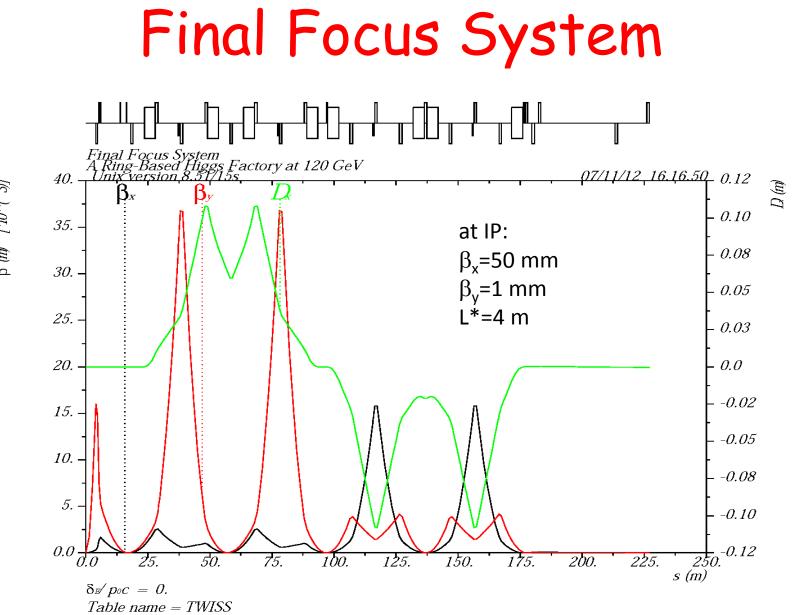


The cancellation occurs in every 12 cells in arcs. Only non-vanishing resonance is $4v_x$.

Arc Design

90°/60° FODO Lattice


Dynamic/Momentum Aperture

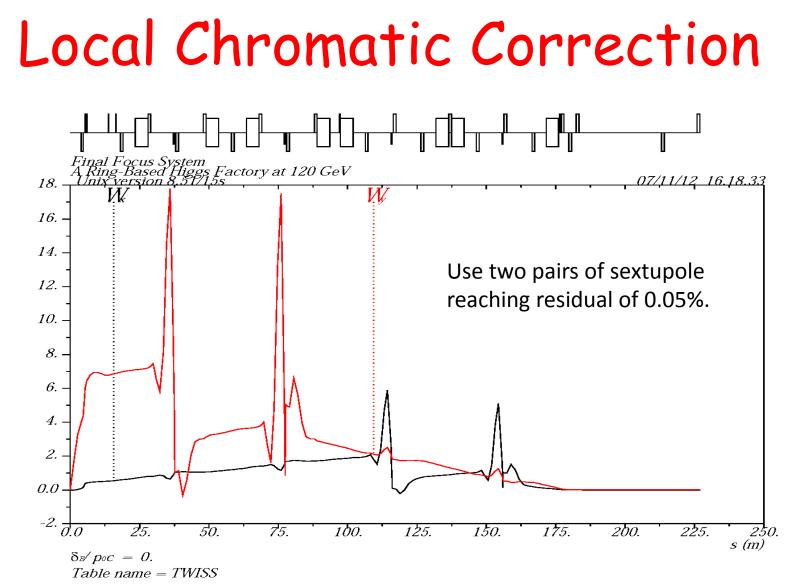


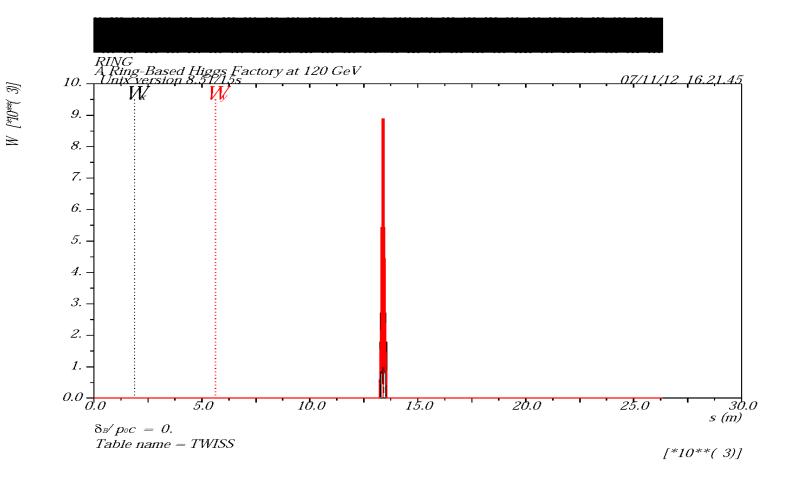
$$\varepsilon_x = F_c \frac{C_q \gamma^2}{J_x} \theta^3$$

where θ is the bending angle in a cell.

Natural emittance: ε_x =4.3 nm and cell length is 28.375 m

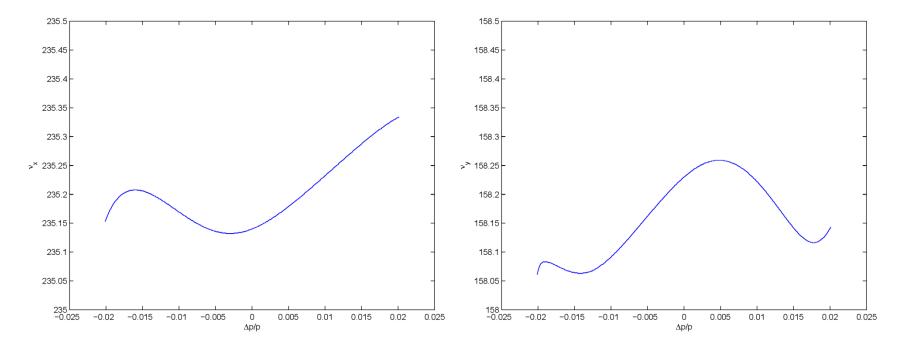
Lattice of Collider Ring




11/15/2012

Yunhai Cai, HF2012 Workshop

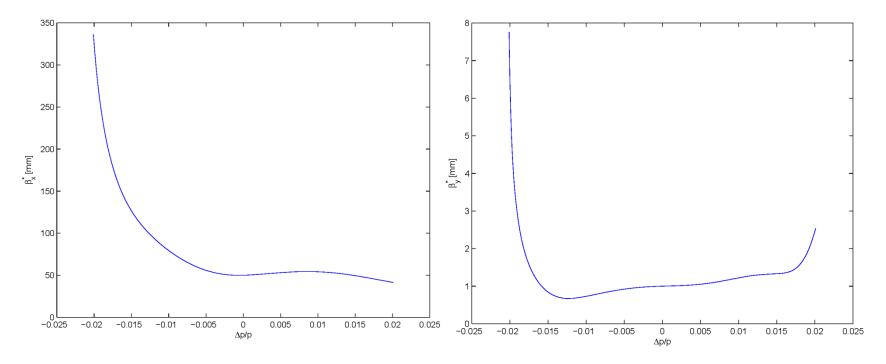
11/15/2012


Chromatic Beating in Collider Ring

Betatron Tune vs. Momentum

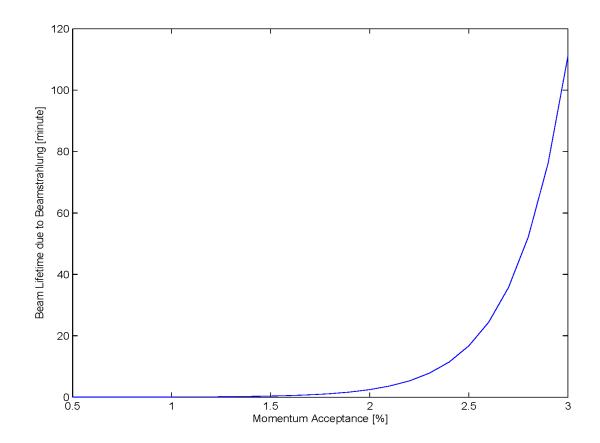
Horizontal

Vertical



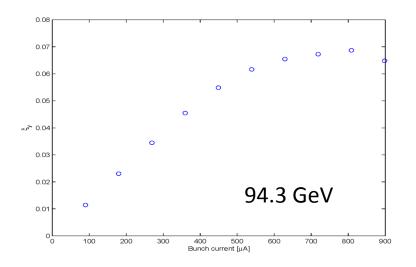
Four families of sextupole used in the optimization, achieving ±2% momentum bandwidth.

Beta Functions at IP vs. Momentum


Horizontal

Vertical

Good region of ±0.4% in $\Delta p/p$ is necessary for the core in beam distribution.


Beam Lifetime due to Beamstrahlung

Estimate for LBNL/SLAC ring based on Telnov's paper.

Benchmark of Beam-Beam Code

3D PIC Simulation (BBI)

Parameters provided by Frank Zimmermann Helmut Burkhardt

http://hbu.web.cern.ch/hbu/BeamDyn/LEP.html

 ϵ_v =0.19 nm, without beam-beam perturbation

Measurement

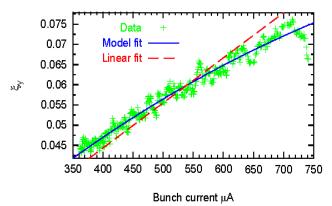
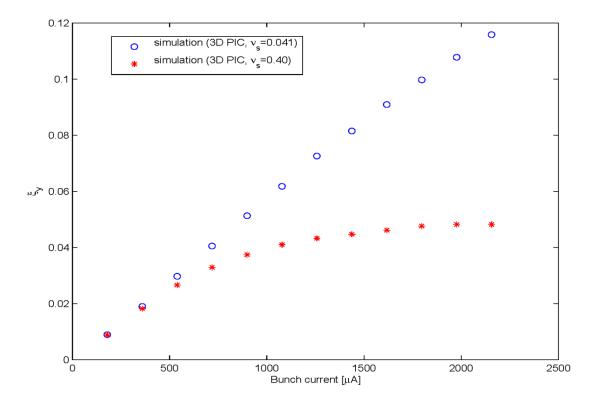



Figure 1: Measured ξ_y at 94.5 GeV versus bunch current. The data is fitted with ("Model fit") and without ("Linear fit") beam-beam limitation.

R. Assmann and K. Cornelis, Proceeding of EPAC 2000, Vienna, Austria

Beam-Beam Simulation (LEP3, Frank Zimmermann's parameters)

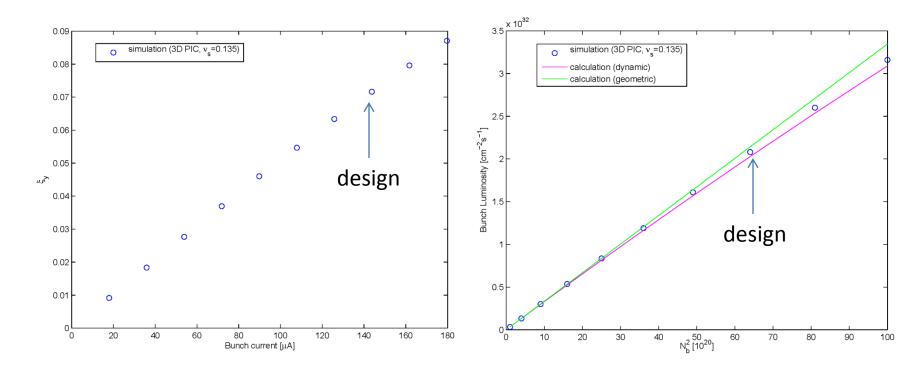
Beam-beam limit can be as low as 0.05 if synchrotron tune is too high, even with very strong radiation damping.

Longitudinal Dynamics

• Synchrotron tune:

$$v_s = \sqrt{\frac{h\alpha_p}{2\pi} \frac{eV_{RF}}{E_0}} \cos\phi_s$$

to lower v_s one wants lower RF frequency and momentum compaction factor. This also makes RF bucket height


$$\delta_{RF,\max} = \sqrt{\frac{F(q)U_0}{\pi h\alpha_p E_0}}$$

larger and allows a larger momentum acceptance.

Beam-Beam Simulation LBNL/SLAC Design (f_{RF} =700 MHz and α_p =2.4x10⁻⁵)

Beam-beam parameter

Bunch luminosity

There is no surprise. It simply confirms calculations.

Yunhai Cai, HF2012 Workshop

Lattice Issues

- Ultra-low beta (1mm) IR design with large momentum bandwidth (3%)
- Low emittance lattice and ultra-low beta IR with adequate dynamic aperture (10 σ)
- Large synchrotron radiation, saw-tooth (1-2%) in arcs of two beams in single ring
- Machine tolerances, especially alignment tolerance and orbit stability

Risks & Mitigations & RD Items

- Ultra-low beta* with large energy bandwidth in ring β_v *=1 mm and η > 3% (lower emittance)
- RF parameters: frequency, voltage, gradient? What's length is necessary for RF system (f_{RF}=700 MHz and V_{RF}=12 GV) ? is HOM a problem?
- What is the shortest bunch we can make?
 Coherent synchrotron radiation, heating
- What is energy reach of ring? How large is can be? How about 80 km?

Summary

- Impact on design due to beamstrahlung is analyzed. We found a formula of minimum natural emittance that is necessary for beam lifetime.
- A systematic design procedure is outlined. There are many possible solutions. The final choice should be to made with other considerations, including the interaction region design.
- We have achieved 2% momentum bandwidth in a lattice with an ultra-low beta interaction region