LHC Beam Optics Measurement and Correction with the AC Dipole

LARP CM 14, April 26th 2010

R. Miyamoto & G. Wang (BNL)

On behalf of LARP AC Dipole Collaboration (in the past and present):

M. Bai, R. Calaga, P. Oddo (BNL),

H. Schmickler, J. Serrano, R. Tomas (CERN),

A. Jansson, M. Syphers (FNAL), S. Kopp (UT Austin)

& many thanks to

M. Cattin, V. Kain, F. Schmidt, J. Uythoven,

G. Vanbavinckhove (CERN), M. Aiba (PSI)

Outline

- Status of the LHC AC dipoles
- Status of LHC Optics
- An Example of LHC Optics Measurement and Correction with the AC dipole:
 - Commissioning of β -squeeze for IPs 1&5
- US Activities
- Summary

Status of the LHC AC dipoles

- All four AC dipoles are commissioned and in operational.
- Design specifications (field strength & band width) are achieved.
- Due to the LHC's slow cycle (~1 hr for ramp up, ramp down, squeeze, precycle...), the AC dipole (non destructive) is the only practical prove to beam optics above injection energy.
- β -beating and local coupling have been measured and corrected for β squeeze with the AC dipole.

Machine	RHIC	Tevatron	LHC
E [GeV]	250	980	7000
σ [mm]	0.75	0.5	0.3
$ v_{\rm d}$ - $v $	≥ 0.01	≥ 0.01	≥ 0.01
$\beta_{\rm arc}, \beta_{\rm acd}$ [m]	45, 11	80, 47	180, 260
$(Bl)_{\rm acd}$ for 4σ [Gm]	140 (105)	140 (115)	200
$f_{ m rev}[{ m kHz}]$	78	48	11
v, 1-v	0.69, 0.31	0.58, 0.42	0.3, 0.7
$f_{ m acd}[{ m kHz}]$	55	20.5	3

AC dipoles produce clean signals with (almost no) emittance growth.

Test of the machine protection system.

- Assuming the worst case, the beam is driven on the resonance (450 GeV).
- The beam is dumped after ~300 turns (expected).
- Clean dump and losses only at primary collimators.
- The AC dipole is preferred from the machine protection point of view.

AC dipole is integrated into the LHC Optics Package

Status of LHC Optics

- Tolerance for β -beating (nominal): ~15%*
- Injection β -beating corrected: 20-30%
 - Local corrections of IRs 3, 7, 2, 8, 1, & 6.
 - Dipole b2 (b1 for US convention) corrections.
- Flattop: good as it is (20-30% β -beating)
- Beta-squeeze commissioned (β * = 2 m)
 - β -beating corrections for IRs 2, 5, & 8.
 - Coupling corrections for IRs 1, 2, 5, & 8. (For some steps, dQ_{\min} is as big as 0.02–0.03 and pushing tunes apart.)
- Global corrections tried but not applied yet.

B-Squeeze Commissioning for IPs 1&5

β -beating after the IP5 correction

Local coupling also corrected

$oldsymbol{eta}^*$ measurements in RHIC using ac dipole

(Courtesy of Vadim Ptitsyn)

- Ac dipole was the major method for measuring RHIC beta function in run 10.
 - For run 10, RHIC collides Au-Au at 100GeV. The table below shows the measured β^* for the lattice with 0.6m of designed β^* in IP6 and IP8.
 - The ac dipole measurement agrees reasonablely with gradient variation method.

	Blue/Yellow				
	IR6	IR6	IR8	IR8	
	H	V	H	V	
Gradient Variation (β*,m)	0.76/0.72	0.69/0.84	0.65/0.71	0.63/0.84	
	±0.01	±0.01	±0.01	±0.01	
Ac dipole	0.62/0.65	0.65/0.83	0.695/0.87	0.625/0.84	
(β*,m)	±0.04	±0.04	±0.04	±0.04	

Phase beating measurement using ac dipole

 Due to lack of APEX beam time, we were not able to apply any corrections at store during run 10.

- In lattice with 0.7m designed β^* , 22% rms horizontal phase beating was measured in blue ring during store.
- SVD shows that the maximal correcting strength locates in IR6.

Chromatic β measurement

- ac dipole was used to measure RHIC offmomentum beta function in run 10.
 - RHIC experienced huge beam loss when doing re-bucketing after β^* squeezed to 0.6m. The beam loss is caused by smaller dynamic aperture at 0.6m β^* and was relieved when 0.7m β^* lattice was applied.
 - An factor of 3 disagreement was observed between model and measurement in RHIC yellow ring. Meanwhile Beam loss in yellow ring was more serious than what was observed in blue ring.
 - Further investigation is in working progress.

Blue ring at store energy with 0.6m designed β^*

Summary

- AC Dipole Task has been successfully completed.
 - All four AC dipoles are commissioned and in operational.
 - Required specifications have been achieved.
 - The AC dipoles have been integrated into the operational system and beam optics package.
 - The AC dipoles are the primary probe of beam optics above injection.
- The next step is that CERN makes good use of them.
 - Linear diagnosis has been already established (more of less).
 - The next is RDT, detuning...
 - Off course, we're happy to keep in touch.

Backup Slides

Optics of driven motion \neq Optics of free motion ³

- First observed in the Tevatron.
- Looks additional β -beating. Or, effectively, a thin focusing map.
- Small in LHC (3-4% β -beating in rms) but could be deceiving.

Phase beating measurement of yellow at store with 0.7m designed β^*

Rms phase beating is 11%

Yellow ring at store energy with 0.6m designed β^* Fill 11502, Yellow store Hacd 04+08, no radial shift

Yellow ring at store energy with 0.6m designed β^* Fill 11502, Yellow store Hacd 11~16, with -0.3mm radial shift

Beta beating for on momentum beam. Yellow ring at store energy with 0.6m designed β^*

Beta beating for off momentum beam

Yellow ring at store energy with 0.6m designed β^*

