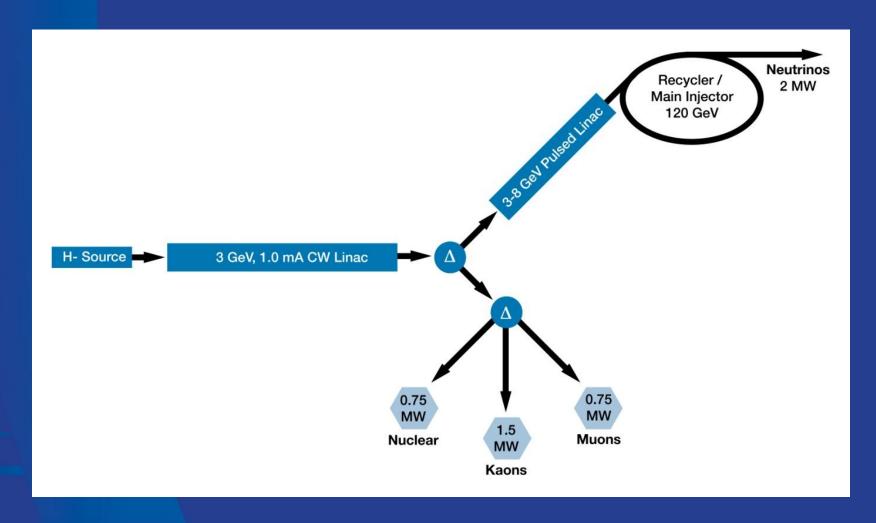
Project X Accelerator Overview

Steve Holmes
Presentation to DOE/Office of High Energy Physics
November 17, 2010

Outline

- Project X Reference Design
 - Mission & Goals
 - Reference Design Overview
 - Collaboration
 - Strategy/Timeline
- Project X Cost Range


Project X Mission

- A neutrino beam for long baseline neutrino oscillation experiments
 - 2 MW proton source at 60-120 GeV
- High intensity, low energy protons for kaon and muon based precision experiments
 - Operations simultaneous with the neutrino program
- A path toward a muon source for possible future Neutrino Factory and/or a Muon Collider
 - Requires ~4 MW at ~5-15 GeV.
- Possible missions beyond P5
 - Standard Model Tests with nuclei and energy applications

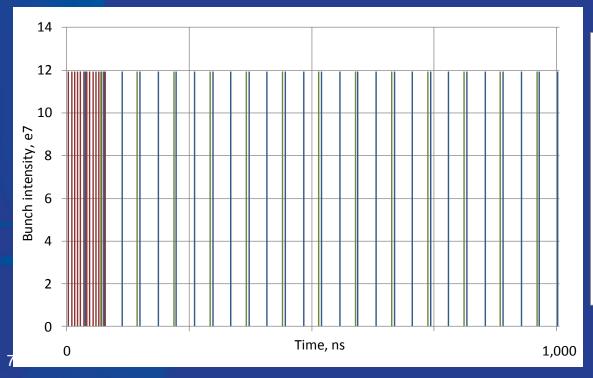
Project X Reference Design

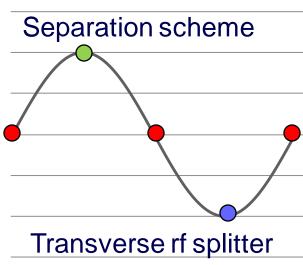
Project X Scope

- 3 GeV CW superconducting H- linac, capable of delivering 1 mA average beam current.
 - Flexible provision for variable beam structures to multiple users
 - Starts at ion source; ends at 3-way split (with stubs)
 - Supports rare processes programs
- 3-8 GeV pulsed linac capable of delivering 300 kW at 8 GeV
 - Supports the neutrino program
 - Establishes a path toward a muon based facility
 - Provision for 1 GeV extraction for nuclear energy program
- Upgrades to the Recycler and Main Injector to provide ≥ 2 MW to the neutrino production target at 60-120 GeV.
 - Ends at MI extraction kicker
 - Supports the long baseline neutrino program
- All interconnecting beamlines

Project X Capabilities

- > 2 MW delivered to a neutrino target at any energy between 60 – 120 GeV
- Simultaneous delivery of ~3 MW of high duty factor beam power to the 3 GeV program
 - Variable beam formats to multiple users
 - CW beam at time scales >1 μsec
 - 10% duty factor on time scales < 1 µsec</p>
- Potential for development of additional programs at:
 - 1 GeV for nuclear energy experimentation
 - 8 GeV for neutrino or muon experimentation
- The utilization of a CW linac creates a facility that is unique in the world, with performance that is unlikely to be duplicated in any synchrotron-based facility




Project X Reference Design Operating scenario

1 μsec period at 3 GeV

Muon pulses (12e7) 162.5 MHz, 80 nsec Kaon pulses (12e7) 27 MHz Nuclear pulses (12e7) 13.5 MHz **750 kW** 1500 kW 750 kW

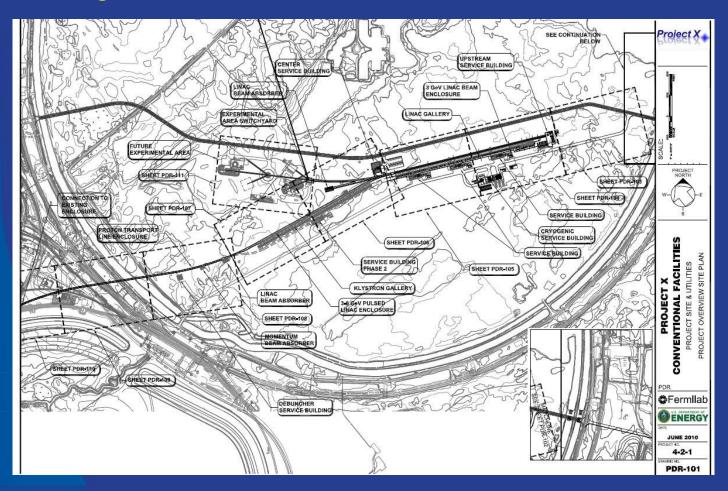
Ion source and RFQ operate at 6.2 mA 83% of bunches are chopped @ 2.5 MeV ⇒ maintain 1 mA over 1 μsec

Project X Supporting Documentation http://projectx-docdb.fnal.gov/

- Functional Requirements Specification
- Reference Design Report
- Research, Design, & Development Plan
- Cost Estimate
- Resource Loaded Schedule

Project X Functional Requirements

Requirement	Description	Value				
L1	Delivered Beam Energy, maximum	3 GeV (kinetic)				
L2	Delivered Beam Power at 3 GeV	3 MW				
L3	Average Beam Current (averaged over >1 μsec)	1 mA				
L4	Maximum Beam Current (sustained for <1 μsec)	10 mA				
L5	The 3 GeV linac must be capable of delivering correctly formatted beam to a pulsed linac, for acceleration to 8 GeV					
L6	Charge delivered to pulsed linac	26 mA-msec in < 0.75 sec				
L7	Maximum Bunch Intensity	1.9 x 10 ⁸				
L8	Minimum Bunch Spacing	3.1 nsec (1/325 MHz)				
L9	Bunch Length	<50 psec (full-width half max)				
L10	Bunch Pattern	Programmable				
L11	RF Duty Factor	100% (CW)				
L12	RF Frequency	325 MHz and harmonics thereof				
L13	3 GeV Beam Split	Three-way				
P1	Maximum Beam Energy 8 GeV					
P2	The 3-8 GeV pulsed linac must be capable of delivering correctly formatted beam for injection into the Recycler Ring (or Main Injector).					
P3	Charge to fill Main Injector/cycle	26 mA-msec in < 0.75 sec				
P4	Maximum beam power delivered to 8 GeV	300 kW				
P5	Duty Factor (initial)	< 4%				



Project X Functional Requirements

Requirement	Description	Value				
M1	Delivered Beam Energy, maximum	120 GeV				
M2	Delivered Beam Energy, minimum	60 GeV				
M3	Minimum Injection Energy	6 GeV				
M4	Beam Power (60-120 GeV)	> 2 MW				
M5	Beam Particles	Protons				
M6	Beam Intensity	1.6 x 10 ¹⁴ protons per pulse				
M7	Beam Pulse Length	~10 µsec				
M8	Bunches per Pulse	~550				
M9	Bunch Spacing	18.8 nsec (1/53.1 MHz)				
M10	Bunch Length <2 nsec (fullwidth half max)					
M11	Pulse Repetition Rate (120 GeV) 1.2 sec					
M12	Pulse Repetition Rate (60 GeV)	0.75 sec				
M13	Max Momentum Spread at extraction 2 x 10 ⁻³					
I1	The 3 GeV and neutrino programs must operate simultaneously					
12	Residual Activation from Uncontrolled Beam Loss in areas requiring hands on maintenance.	<20 mrem/hour (average) <100 mrem/hour (peak) @ 1 ft				
I3	Scheduled Maintenance Weeks/Year					
14	3 GeV Linac Operational Reliability					
15	60-120 GeV Operational Reliability					
16	Facility Lifetime					
U1	Provisions should be made to support an upgrade of the CW linac to support an average current of 4 mA.					
U2	Provisions should be made to support an upgrade of the Main Injector to support a delivered beam power of 4 MW at 120 GeV.					
U3	Provisions should be made to deliver CW proton beams as low as 1 GeV.					
U4	Provision should be made to support an upgrade to the CW linac such that it can accelerate Protons.					

Project X Reference Design Siting

Reference Design: CW Linac Technologies

 β =0.11 β =0.22 β =0.4 β =0.61 β =0.9 β =1.0

325 MHz SSR 2.5-160 MeV

650 MHz Elliptical 0.16-2 GeV

1.3 GHz Elliptical 2-3 GeV

Section	Freq	Energy (MeV)	Cav/mag/CM	Туре
SSR0 (β _G =0.11)	325	2.5-10	26 /26/1	SSR, solenoid
SSR1 (β _G =0.22)	325	10-32	18 /18/ 2	SSR, solenoid
SSR2 (β _G =0.4)	325	32-160	44 /22/4	SSR, solenoid
LB 650 (β _G =0.61)	650	160-520	42 /42/7	5-cell elliptical, doublet
HB 650 (β_G =0.9)	650	520-2000	96 /24/12	5-cell elliptical, doublet
ILC 1.3 (β _G =1.0)	1300	2000-3000	72 /9 /9	9-cell elliptical, quad

Expect to continue with 650

PX OHEP Briefing, November 2010

Pulsed Linac

- Superconducting pulsed linac for acceleration from 3 to 8 GeV
- ILC style cavities and cryomodules
 - 1.3 GHZ, β=1.0
- ILC style rf system
 - 5 MW klystron
 - Four cryomodules per rf source
- Must deliver 26 mA-msec to the Recycler every 0.75 sec. Options:
 - 1 mA x 4.4 msec pulses at 10 Hz
 - Six pulses required to load Recycler/Main Injector
 - 1 mA x 26 msec pulses at 10 Hz
 - One pulse required to load Main Injector

Collaboration

- A multi-institutional collaboration has been established to execute the Project X RD&D Program.
 - Organized as a "national project with international participation"
 - Fermilab as lead laboratory
 - ➤ International participation via in-kind contributions, established through bi-lateral MOUs.
 - Collaboration MOUs for the RD&D phase outlines basic goals, and the means of organizing and executing the work. Signatories:

ANL	ORNL/SNS	BARC/Mumbai
BNL	MSU	IUAC/Delhi
Cornell	TJNAF	RRCAT/Indore
Fermilab	SLAC	VECC/Kolkata
I BNI	II C/ART	

• It would be natural for collaborators to continue their areas of responsibility into the construction phase.

Current Institutional Responsibilities

	Front End	Cav & CMs	RF	Cryo	Instru	Cntrls	MI/Rec ycler	Beam Trnspt	Accel Phys	Systm Integ	Test Facil
ANL		X	X						X		
BNL		Χ						X			
Cornell		X					Χ				
Fermilab	X	Χ	Χ	Χ	Χ	Χ	Χ	X	X	Χ	X
LBNL	X				X				Χ		
SNS					Χ						
MSU		X									
TJNAF		Χ									
SLAC	X		X				X		X		X
ILC/ART		Χ									
BARC	X	X	X	X	X				Χ		X
IUAC		Χ		Χ							
RRCAT		X	X	X							X
VECC		X		X							

RDR Cost Methodology

- Same methodology as previous IC-1 and IC-2 estimates
 - Base estimate of direct costs based on 2010 dollars
 - Bottoms up estimates from technical leads
 - Use or scale IC-1/2 estimates where appropriate
 - Includes spare components
 - Includes R&D
 - FNAL labor rates (13 categories)
 - Full estimate derived from base
 - FNAL standard overhead rates
 - Construction over FY15-19
 - DOE Escalation rates
 - Contingency (40% top down)
 - Time phased RD&D + construction model in two ~500 line MS Projects

Project X Base/Total Estimates Full Estimate, \$Then-year\$

Three estimates, with differing scopes

■ IC-1 \$1,500M

- ➤ 8 GeV pulsed linac + Recycler/MI
- > Limited capabilities for rare processes
- IC-2 \$1,600M
 - ➤ 2 GeV CW linac + 2-8 GeV RCS + Recycler/MI
 - > 2 GeV too low for rare processes (Kaons)
 - Ineffective platform for Neutrino Factory or Muon Collider
- RDR: \$1,800M
 - ➤ 3 GeV CW linac + 3-8 pulsed linac + Recycler/MI
 - > Ameliorates above deficiencies

Cost Comparisons

- RDR is 20% higher than IC-1, 13% higher than IC-2
 - 3.4% is an additional year's escalation
 - 7.3% is in the cryo systems
 - 3.0% is the rf systems
 - 4.7% is the R&D program
- RDR full estimate in \$FY10\$ is ~\$1.5B

Cost Range

- Cost of 3-8 GeV acceleration
 - \$302 M with RCS
 - \$420 M with pulsed linac
- Direct injection into MI at 6 GeV
 - 3-6 GeV Pulsed linac
 - Requires solution for injection of 26 msec H- pulse
 - \$305 M for pulsed linac (net Recycler)
- Bottom Line: Could save ~\$115M by either:
 - Substitute RCS for 3-8 GeV pulsed linac; or
 - Direct inject into Main Injector at 6 GeV with pulsed linac
- ⇒Preference is to retain the pulsed linac as it provides much better platform for muon based facilities, and leverages world-wide technology development

Strategy/Timeline

- November: Finalize all preliminary design, configuration, and cost range documentation for CD-0.
 - Functional Requirements Specification
 - Reference Design Report
 - RD&D Plan
 - Cost estimate/range
 - Resource Loaded Schedulee
- Deliverables: Next four years
 - All documentation required by the Department of Energy prior to authorizing construction
 - Supporting technical R&D required to validate the design and establish fabrication methods
- Assumed Critical Decision dates
 - CD-0: January 2011
 - CD-1: July 2012
 - CD-2: August 2013
 - CD-3: September 2014
 - CD-4: September 2019
 - ⇒ Project X could be up and running in ~2020

Summary

- Project X will enable a world-leading accelerator based HEP program at Fermilab for decades
- The Project X Reference Design as established over the last year provides capabilities that will be unique in the world
 - 2 MW to the neutrino program over 60-120 GeV
 - 3 MW to the rare processes program
 - Flexible provision for variable beam formats to multiple users
 - Technology aligned with ILC and NF/MC
- The Reference Design cost range is \$1.7-1.8B
 - 20% increase over IC-1
 - Some of this is inflation
 - Most is related to increased costs associated with a high power, CW linac
 - Assumes construction over FY2015-2019
 - Does not account for in-kind international contributions
- We are ready for CD-0

Backup Slides

PX/NF/MC Strategy

- Project X shares many features with the proton driver required for a Neutrino Factory or Muon Collider
 - NF and MC require ~4 MW @ 10+5 GeV
 - Primary issues are related to beam "format"
 - NF wants proton beam on target consolidated in a few bunches; Muon Collider requires single bunch
 - Project X linac is not capable of delivering this format

⇒ It is inevitable that a new ring(s) will be required to produce the correct beam format for targeting.

Benchmarks

- Cavity/Cryomodule costs
 - JLab
 - ILC R&D
- Cryogenic costs
 - SNS
 - JLab
- RF costs
 - \$/watt
- Conventional
 - Means + recent Fermilab experience

International Governance Organizing Principles

- DOE and Fermilab hold sole responsibility for delivery of the facility and subsequent operations.
 - Supported by high level institutional board providing advice on establishing the international context, distribution of work, publicizing efforts, establishing operational modes, etc.
- All international contributions should be in-kind.
- All arrangements between Fermilab and international partners should be bi-lateral.
 - Fermilab does not want to mediate interactions between foreign countries.
 - Each deliverable should be the responsibility of a single country.
- Each deliverable should have a Fermilab manager and a manager/point of contact from the corresponding country.
 - Indian Institutes Fermilab Collaboration model
 - No Fermilab sub-project manager should be coordinating with more than one country.

Loaded, Escalated, Contingency

- FNAL Std OH on SWF and M&S, incl. large procurements (~24%)
- DOE Escalation Rate for Lab(14.6%)
- Budget profile
- Top Down Contingency (40%)

	IC-1	IC-2
Base Cost	\$743,545,773	\$798,398,035
Labor OH	\$141,706,717	\$137,168,282
M&S OH	\$44,210,773	\$50,389,042
Base + OH	\$929,463,263	\$985,955,359
FY09\$>TY\$	\$135,701,636	\$143,949,482
Escalated Base + OH	\$1,065,164,900	\$1,129,904,842
Contingency	\$426,065,960	\$451,961,937
Total	\$1,491,230,859	\$1,581,866,778

Opportunities (Loaded Estimate)

- Review FNAL Overheads, negotiate for direct project costs vs. lab services / support
 - Current OH ~24%; comparison 12GeV / 6%+support; NSLS-II (10%); FRIB 10%+MSU\$+zero on some items
- Review Contingency
 - Currently top down at 40%; some technical leads note this is very conservative for components available off the shelf
 - Compare base numbers w/ data from JLab, XFEL.....
 - Integration, Civil construction require large uncertainties
- Utilize International Collaborations

Opportunities (base estimate)

- Value engineering on all aspects of Conventional Facilities design requirements
- Value engineering and consolidation of RF designs
- Continued studies on HE Linac cavities and cryomodules
 - IC-1 Review pointed out HE Linac cryomodules could be ~300/400k\$ less in qty (-18M\$ (IC1), -7M\$ (IC2))
 - Review pressure ratings, 5K shield, HOM couplers, piezo tuners, ...
- Review of LE Linac cryomodules and consolidation of HE / LE cryomodule technical design criteria
 - LE Linac cryomodules should have a similar target as HE Linac (-9M\$)
- Review of uncertainties in component heat loads and effect on cryogenic system
- Overall development of consolidated beamline and instrumentation scheme

