# Quarkonium from three-flavor lattice QCD

# Ludmila Levkova MILC and Fermilab Lattice Collaborations

[QWG, May 18, 2010]

#### MILC and Fermilab Lattice Collaboration members

- T. Burch (University of Utah)
- C. DeTar (University of Utah)
- M. Di Pierro (DePaul University)
- A. X. El-Khadra (University of Illinois)
- E. D. Freeland (Washington University)
  - S. Gottlieb (Indiana University)
    - A. S. Kronfeld (FNAL)
  - L. Levkova (University of Utah)
    - P. B. Mackenzie (FNAL)
      - J. N. Simone (FNAL)

#### **Outline**

- Motivation
- ► Lattice QCD and the Fermilab method for heavy quarks
- ► Splittings in the charmonium and bottomonium systems: Phys. Rev. D81:034508, 2010
- Conclusions and future plans

## **Motivation**

- ► Study the quarkonium spectrum in an *ab initio* calculation based on lattice QCD with three flavors of quarks.
- ► Test the Fermilab action, which treats heavy and light quarks within the same framework.
- Assess the errors that arise from our treatment of the heavy quarks.

# **Lattice QCD**



- Discretized version of QCD on a 4d space-time lattice (Wilson, 1974).
- ► Nonperturbative approach to QCD.
- ► Solved by large scale numerical simulations using supercomputers.
- ightharpoonup The lattice spacing is a.
  - $\triangleright$  Continuum limit taken as  $a \to 0$ .
  - ightharpoonup Momentum cut-off O(1/a).

- Fermions fields live on the lattice sites. They are represented by pseudofermions (complex vectors).
- ▶ Gluons encoded in links (SU(3)) matrices between sites.

#### **Heavy-quark formulation**

$$S = \sum_{n} \bar{\psi}_{n} \psi_{n} - \kappa \sum_{n} \left[ \bar{\psi}_{n} (1 - \gamma_{4}) U_{n,4} \psi_{n+\hat{4}} + \bar{\psi}_{n+\hat{4}} (1 + \gamma_{4}) U_{n,4}^{\dagger} \psi_{n} \right]$$

$$- \kappa \zeta \sum_{n,i} \left[ \bar{\psi}_{n} (r_{s} - \gamma_{i}) U_{n,i} \psi_{n+\hat{i}} + \bar{\psi}_{n+\hat{i}} (r_{s} + \gamma_{i}) U_{n,i}^{\dagger} \psi_{n} \right]$$

$$- c_{B} \kappa \zeta \sum_{n} \bar{\psi}_{n} i \Sigma \cdot B_{n} \psi_{n} - c_{E} \kappa \zeta \sum_{n} \bar{\psi}_{n} \alpha \cdot E_{n} \psi_{n},$$

- We adjust  $\kappa, \zeta, r_s, c_B$  and  $c_E$  so that the lattice gauge theory matches the NRQCD description of continuum QCD with controllable uncertainty. We set  $r_s=1$ ,  $\zeta=1$  and  $c_E=c_B=u_0^{-3}$ .
- Expected errors:
  - ightharpoonup Hyperfine splittings  $O(\alpha_s m v^4)$  and  $O(v^6)$ , larger for charmonium.
  - $\triangleright$  Spin-orbit part of the  $\chi$  splittings  $O(a^2m^3v^4)$ , larger for charmonium.
  - $\triangleright$  Spin-averaged splittings  $O(a^2m^3v^4)$ , larger for bottomonium.
- ▶ All of the above errors are within a few to several percent of the splitting.

#### **Tuning of the heavy quark mass**

▶ The hopping parameter  $\kappa$  and bare quark mass  $m_0$  are related:

$$m_0 a = \frac{1}{2\kappa} - 1 - 3r_s \zeta$$

To tune the quark mass we tune  $\kappa$ .

► Nonrelativistic interpretation of Wilson fermions:

$$E(p) = m_1 + \frac{p^2}{2m_2} + O(p^4),$$

The quark rest mass is  $m_1$  and the kinetic mass is  $m_2$ . Their relation to  $m_0$  can be calculated in perturbation theory. We have  $m_1 \neq m_2$  unless  $m_0 a \ll 1$ 

Similarly we define for a meson:

$$M_1 = 2m_1 + B_1 M_2 = 2m_2 + B_2$$

We tune  $\kappa$  to make  $M_2(\overline{1S})$  (approximately) equal to the experimental value of a heavy-light hadron  $(D_s$  and  $B_s$ ).

#### Constructing and fitting the quarkonium correlators

 $\blacktriangleright$  The meson propagator at spatial momentum p:

$$C_{ab}(p,t) = \sum_{x} e^{-ip \cdot x} \langle 0|O_a(x,t)O_b^{\dagger}(0,0)|0\rangle,$$

with

$$O_c(x,t) = \sum_y \bar{\psi}(x,t)\Gamma\phi_c(x-y)\psi(y,t).$$

We use relativistic operators and non-relativistic ones for the P-wave states.

- ► Fitting the correlators:
  - Bayesian fits with priors from potential models.
  - ▶ Use simultaneous fits to up to three source-sink combinations.
  - ▶ Include up to 2 excited states in fitting functions.

#### Parameters of the MILC ensembles used

- The ensembles are generated using the staggered asqtad action. There are two light quark flavors and a strange quark in the sea (2+1 flavors).
- ► The ensembles are also referred as: fine , coarse, medium coarse and extra coarse.

|                |                  |                |                    |              |              | 1          |              |                 |              |            |              |
|----------------|------------------|----------------|--------------------|--------------|--------------|------------|--------------|-----------------|--------------|------------|--------------|
|                |                  |                |                    | relativistic |              |            |              | nonrelativistic |              |            |              |
| <i>a</i> (fm)  | $oldsymbol{eta}$ | $am_l/am_s$    | $N_s^3 \times N_t$ | $\kappa_c$   | $N_{conf}^c$ | $\kappa_b$ | $N_{conf}^b$ | $\kappa_c$      | $N_{conf}^c$ | $\kappa_b$ | $N_{conf}^b$ |
| $\approx 0.18$ | 6.503            | 0.0492/0.082   | $16^{3} \times 48$ | 0.120        | 401          |            | _            | 0.120           | 400          | _          | _            |
|                | 6.485            | 0.0328/0.082   | 11                 | "            | 331          |            |              | 11              | 501          |            |              |
|                | 6.467            | 0.0164/0.082   | **                 | "            | 645          |            |              | "               | 647          |            |              |
|                | 6.458            | 0.0082/0.082   | ***                | "            | 400          |            |              | "               | 601          |            |              |
| $\approx 0.15$ | 6.600            | 0.0290/0.0484  | $16^{3} \times 48$ | -            |              |            | _            | 0.122           | 580          | 0.076      | 595          |
|                | 6.586            | 0.0194/0.0484  | ***                | 0.122        | 631          | 0.076      | 631          | "               | 580          | "          | 595          |
|                | 6.572            | 0.0097/0.0484  | ***                | "            | 631          | "          | 631          | 11              | 629          | "          | 631          |
|                | 6.566            | 0.00484/0.0484 | $20^{3} \times 48$ | -            |              |            |              | "               | 601          | "          | 600          |
| $\approx 0.12$ | 6.81             | 0.03/0.05      | $20^{3} \times 64$ | 0.122        | 549          | 0.086      | 549          |                 |              | _          |              |
|                | 6.79             | 0.02/0.05      | ***                | "            | 460          | 11         | 460          |                 |              |            |              |
|                | 6.76,a           | 0.01/0.05      | **                 | "            | 593          | "          | 539          |                 |              |            |              |
|                | 6.76,b           | 0.007/0.05     | **                 | "            | 403          |            |              |                 |              |            |              |
| $\approx 0.09$ | 7.11             | 0.0124/0.031   | $28^3 \times 96$   | 0.127        | 517          | 0.0923     | 517          | 0.127           | 518          | 0.0923     | 510          |
|                | 7.09             | 0.0062/0.031   | **                 | "            | 557          | "          | 557          | 11              | 557          | "          | 557          |
|                | 7.08             | 0.0031/0.031   | $40^3 \times 96$   | "            | 504          | "          | 504          | 11              | 504          | "          | 504          |

#### **Charmonium spin-averaged splittings**

$$M(\overline{1S}) = \frac{1}{4} \left( M_{\eta_c} + 3M_{J/\psi} \right), \qquad M(\overline{1^3P}) = \frac{1}{9} \left( M_{\chi_{c0}} + 3M_{\chi_{c1}} + 5M_{\chi_{c2}} \right)$$



- ▶ Discretization effects of  $O(v^4)$ . Expected relative errors no more than 8%.
- ▶ Units:  $r_1 = 0.318$  fm or 620 MeV.

### **Bottomonium spin-averaged splittings**



▶ Discretization effects of  $O(v^4)$ . Expected relative errors no more than 6%.

# The $\overline{2S} - \overline{1S}$ splittings



Charmonium results. Possible contributions from open-charm levels.

▶ Bottomonium results. The openbottom levels are safely distant.

#### **Charmonium hyperfine splitting**

$$M(nS_{\mathsf{HFS}}) = M_{J/\psi} - M_{\eta_c}$$





Chirally extrapolated results with statistical errors only. Expected error of  $O(\alpha_s a)$  through the tree-level tuned  $c_B$ .

▶ Continuum extrapolated results with  $\kappa$ -tuning errors added. Extrapolated value  $116 \pm 7.4$  MeV. Experimental  $116.4 \pm 1.2$  MeV.

#### **Bottomonium hyperfine splitting**



Chirally extrapolated results with statistical errors only.



Continuum extrapolation with  $\kappa$ -tuning errors added:  $54.0 \pm 12.4$  MeV. Experimental  $69.4 \pm 2.8$  MeV.

#### Spin-orbit splitting in 1P levels: adjusting the chromoelectric interactions

$$M(nP_{\text{spin-orbit}}) = \frac{1}{9} \left( 5M_{\chi_{c2}} - 2M_{\chi_{c0}} - 3M_{\chi_{c1}} \right)$$



Charmonium

Bottomonium

#### Tensor splittings in 1P levels: adjusting the chromomagnetic interactions

$$M(nP_{\text{tensor}}) = \frac{1}{9} \left( 3M_{\chi_{c1}} - M_{\chi_{c2}} - 2M_{\chi_{c0}} \right)$$



Charmonium

Bottomonium

#### Ratio of the 1P tensor and 1S hyperfine splittings

▶ If there are no effects from higher order operators in the chromomagnetic interactions this ratio should be a constant agreeing with experiment.



Charmonium: possible effects  $(v^2 \sim 0.3)$ .

▶ Bottomonium: effects are supressed  $(v^2 \sim 0.1)$ .

1.0

#### Charmonium-heavy-light splitting: a purely QCD quantity

$$2M(\overline{D_s}) - M(\overline{1S})$$





Chiral extrapolation.



### Botomonium-heavy-light splittings: a purely QCD quantity







► Continuum extrapolation with  $\kappa$ -tuning errors added.

#### **Quarkonium spectra**



Puarkonium spectrum as splittings from the  $\overline{1S}$  level for  $\overline{c}c$  (left) and  $\overline{b}b$  (right). The fine-ensemble results are in blue fancy squares, the coarse in green circles, the medium-coarse in orange diamonds and the extra-coarse in red squares. Solid lines show the experimental values, and dashed lines estimates from potential models. The dotted line in the left panel indicates the physical open-charm threshold. The error on the data points combines statistical,  $\kappa$ -tuning, and  $r_1$  uncertainties.

#### Continuum extrapolations of splittings in quarkonium

| Splitting                         | Charmo                      | nium             | Bottomonium                 |                   |  |  |
|-----------------------------------|-----------------------------|------------------|-----------------------------|-------------------|--|--|
|                                   | This work                   | Experiment       | This work                   | Experiment        |  |  |
| $\overline{1P}$ - $\overline{1S}$ | $473 \pm 12^{+10}_{-0}$     | $457.5 \pm 0.3$  | $446 \pm 18^{+10}_{-0}$     | $456.9 \pm 0.8$   |  |  |
| ${}^{1}\!P_{1}$ - $\overline{1S}$ | $469 \pm 11^{+10}_{-0}$     | $457.9 \pm 0.4$  | $440 \pm 17^{+10}_{-0}$     |                   |  |  |
| $\overline{2S}$ - $\overline{1S}$ | $792 \pm 42^{+17}_{-0}$     | $606 \pm 1$      | $599 \pm 36^{+13}_{-0}$     | $(580.3 \pm 0.8)$ |  |  |
| $1^3S_1$ - $1^1S_0$               | $116.0 \pm 7.4^{+2.6}_{-0}$ | $116.4 \pm 1.2$  | $54.0 \pm 12.4^{+1.2}_{-0}$ | $69.4 \pm 2.8$    |  |  |
| 1P tensor                         | $15.0 \pm 2.3^{+0.3}_{-0}$  | $16.25 \pm 0.07$ | $4.5 \pm 2.2^{+0.1}_{-0}$   | $5.25 \pm 0.13$   |  |  |
| 1P spin-orbit                     | $43.3 \pm 6.6^{+1.0}_{-0}$  | $46.61 \pm 0.09$ | $16.9 \pm 7.0^{+0.4}_{-0}$  | $18.2 \pm 0.2$    |  |  |
| $1S \ \bar{s}Q$ - $\bar{Q}Q$      | $1058 \pm 13^{+24}_{-0}$    | $1084.8 \pm 0.8$ | $1359 \pm 304_{-0}^{+31}$   | $1363.3 \pm 2.2$  |  |  |

Continuum extrapolations of splittings in charmonium and bottomonium in MeV. The first error comes from statistics and accumulated extrapolation systematics; the second comes from the uncertainty in scale setting with  $r_1 = 0.318^{+0.000}_{-0.007}$  fm.

#### **Conclusions**

- ► We study the bottomonium and charmonium systems with the Fermilab method and we reproduce successfully important features of the quarkonium spectrum.
- ► The size of the discretization effects is as expected from the theory.
- $\blacktriangleright$  The tuning error in  $\kappa$  is significant for spin-dependent splittings.

#### ► Future plans:

- Statistics is increased up to 4 times.
- $\triangleright$  Ensembles with lattice spacings of 0.06 and 0.045 fm are now available. Should bring bottomonium discretization effects to under 1%.
- $\triangleright$  Further improvements of the Fermilab action ( $p^4$  corrections).
- $\triangleright$  Significantly improve  $\kappa$ -tuning errors.