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Motivation

◮ Study the quarkonium spectrum in an ab initio calculation based on lattice QCD with
three flavors of quarks.

◮ Test the Fermilab action, which treats heavy and light quarks within the same frame-
work.

◮ Assess the errors that arise from our treatment of the heavy quarks.



Lattice QCD

x

t

lattice spacing : a

◮ Discretized version of QCD on a 4d
space-time lattice (Wilson, 1974).

◮ Nonperturbative approach to QCD.

◮ Solved by large scale numerical simu-
lations using supercomputers.

◮ The lattice spacing is a.

⊲ Continuum limit taken as a → 0 .

⊲ Momentum cut-off O(1/a).

◮ Fermions fields live on the lattice sites. They are represented by pseudofermions
(complex vectors).

◮ Gluons encoded in links (SU(3) matrices) between sites.



Heavy-quark formulation

S =
∑

n

ψ̄nψn − κ
∑

n

[

ψ̄n(1 − γ4)Un,4ψn+4̂ + ψ̄n+4̂(1 + γ4)U
†
n,4ψn

]

− κζ
∑

n,i

[

ψ̄n(rs − γi)Un,iψn+ı̂ + ψ̄n+ı̂(rs + γi)U
†
n,iψn

]

− cBκζ
∑

n

ψ̄niΣ · Bnψn − cEκζ
∑

n

ψ̄nα · Enψn,

◮ We adjust κ, ζ, rs, cB and cE so that the lattice gauge theory matches the NRQCD
description of continuum QCD with controllable uncertainty.
We set rs = 1, ζ = 1 and cE = cB = u−3

0 .

◮ Expected errors:

⊲ Hyperfine splittings — O(αsmv4) and O(v6), larger for charmonium.

⊲ Spin-orbit part of the χ splittings — O(a2m3v4), larger for charmonium.

⊲ Spin-averaged splittings — O(a2m3v4), larger for bottomonium.

◮ All of the above errors are within a few to several percent of the splitting.



Tuning of the heavy quark mass

◮ The hopping parameter κ and bare quark mass m0 are related:

m0a =
1

2κ
− 1 − 3rsζ

To tune the quark mass we tune κ.

◮ Nonrelativistic interpretation of Wilson fermions:

E(p) = m1 +
p2

2m2
+ O(p4),

The quark rest mass is m1 and the kinetic mass is m2. Their relation to m0 can be
calculated in perturbation theory. We have m1 6= m2 unless m0a ≪ 1

◮ Similarly we define for a meson:

M1 = 2m1 + B1

M2 = 2m2 + B2

◮ We tune κ to make M2(1S) (approximately) equal to the experimental value of a
heavy-light hadron (Ds and Bs).



Constructing and fitting the quarkonium correlators

◮ The meson propagator at spatial momentum p:

Cab(p, t) =
∑

x

e−ip·x〈0|Oa(x, t)O
†
b(0, 0)|0〉,

with
Oc(x, t) =

∑

y

ψ̄(x, t)Γφc(x − y)ψ(y, t).

We use relativistic operators and non-relativistic ones for the P -wave states.

◮ Fitting the correlators:

⊲ Bayesian fits with priors from potential models.

⊲ Use simultaneous fits to up to three source-sink combinations.

⊲ Include up to 2 excited states in fitting functions.



Parameters of the MILC ensembles used

◮ The ensembles are generated using the staggered asqtad action. There are two light
quark flavors and a strange quark in the sea (2+1 flavors).

◮ The ensembles are also referred as: fine , coarse, medium coarse and extra coarse.

relativistic nonrelativistic
a (fm) β aml/ams N 3

s
× Nt κc N c

conf κb N b

conf κc N c

conf κb N b

conf
≈ 0.18 6.503 0.0492/0.082 163 × 48 0.120 401 — 0.120 400 —

6.485 0.0328/0.082 ” ” 331 ” 501
6.467 0.0164/0.082 ” ” 645 ” 647
6.458 0.0082/0.082 ” ” 400 ” 601

≈ 0.15 6.600 0.0290/0.0484 163 × 48 — — 0.122 580 0.076 595
6.586 0.0194/0.0484 ” 0.122 631 0.076 631 ” 580 ” 595
6.572 0.0097/0.0484 ” ” 631 ” 631 ” 629 ” 631
6.566 0.00484/0.0484 203 × 48 — — ” 601 ” 600

≈ 0.12 6.81 0.03/0.05 203 × 64 0.122 549 0.086 549 — —
6.79 0.02/0.05 ” ” 460 ” 460

6.76,a 0.01/0.05 ” ” 593 ” 539
6.76,b 0.007/0.05 ” ” 403 —

≈ 0.09 7.11 0.0124/0.031 283 × 96 0.127 517 0.0923 517 0.127 518 0.0923 510
7.09 0.0062/0.031 ” ” 557 ” 557 ” 557 ” 557
7.08 0.0031/0.031 403 × 96 ” 504 ” 504 ” 504 ” 504



Charmonium spin-averaged splittings

M(1S) =
1

4

(

Mηc + 3MJ/ψ

)

, M(13P ) =
1

9

(

Mχc0 + 3Mχc1 + 5Mχc2

)

◮ Discretization effects of O(v4). Expected relative errors no more than 8%.

◮ Units: r1 = 0.318 fm or 620 MeV.



Bottomonium spin-averaged splittings

◮ Discretization effects of O(v4). Expected relative errors no more than 6%.



The 2S − 1S splittings

◮ Charmonium results. Possible contribu-
tions from open-charm levels.

◮ Bottomonium results. The open-
bottom levels are safely distant.



Charmonium hyperfine splitting

M(nSHFS) = MJ/ψ − Mηc

◮ Chirally extrapolated results with sta-
tistical errors only. Expected error of
O(αsa) through the tree-level tuned
cB.

i

◮ Continuum extrapolated results with
κ-tuning errors added. Extrapolated
value 116 ± 7.4 MeV. Experimental
116.4 ± 1.2 MeV.



Bottomonium hyperfine splitting

◮ Chirally extrapolated results with statis-
tical errors only.

◮ Continuum extrapolation with κ-tuning
errors added: 54.0 ± 12.4 MeV. Exper-
imental 69.4 ± 2.8 MeV.



Spin-orbit splitting in 1P levels: adjusting the chromoelectric interactions

M(nPspin-orbit) =
1

9

(

5Mχc2 − 2Mχc0 − 3Mχc1

)

◮ Charmonium ◮ Bottomonium



Tensor splittings in 1P levels: adjusting the chromomagnetic interactions

M(nPtensor) =
1

9

(

3Mχc1 − Mχc2 − 2Mχc0

)

◮ Charmonium ◮ Bottomonium



Ratio of the 1P tensor and 1S hyperfine splittings

◮ If there are no effects from higher order operators in the chromomagnetic interactions
this ratio should be a constant agreeing with experiment.

◮ Charmonium: possible effects
(v2 ∼ 0.3).

◮ Bottomonium: effects are supressed
(v2 ∼ 0.1).



Charmonium-heavy-light splitting: a purely QCD quantity

2M(Ds) − M(1S)

◮ Chiral extrapolation.
◮ Continuum extrapolation with κ-tuning

errors added.



Botomonium-heavy-light splittings: a purely QCD quantity

◮ Chiral extrapolation.
◮ Continuum extrapolation with κ-tuning

errors added.



Quarkonium spectra

◮ Quarkonium spectrum as splittings from the 1S level for c̄c (left) and b̄b (right). The
fine-ensemble results are in blue fancy squares, the coarse in green circles, the medium-
coarse in orange diamonds and the extra-coarse in red squares. Solid lines show the
experimental values, and dashed lines estimates from potential models. The dotted
line in the left panel indicates the physical open-charm threshold. The error on the
data points combines statistical, κ-tuning, and r1 uncertainties.



Continuum extrapolations of splittings in quarkonium

Splitting Charmonium Bottomonium
This work Experiment This work Experiment

1P -1S 473 ± 12+10

−0 457.5 ± 0.3 446 ± 18+10

−0 456.9 ± 0.8
1P1-1S 469 ± 11+10

−0 457.9 ± 0.4 440 ± 17+10

−0 —
2S-1S 792 ± 42+17

−0 606 ± 1 599 ± 36+13

−0 (580.3 ± 0.8)
13S1-1

1S0 116.0 ± 7.4+2.6

−0 116.4 ± 1.2 54.0 ± 12.4+1.2

−0 69.4 ± 2.8
1P tensor 15.0 ± 2.3+0.3

−0 16.25 ± 0.07 4.5 ± 2.2+0.1

−0 5.25 ± 0.13
1P spin-orbit 43.3 ± 6.6+1.0

−0 46.61 ± 0.09 16.9 ± 7.0+0.4

−0 18.2 ± 0.2
1S s̄Q-Q̄Q 1058 ± 13+24

−0 1084.8 ± 0.8 1359 ± 304+31

−0 1363.3 ± 2.2

◮ Continuum extrapolations of splittings in charmonium and bottomonium in MeV. The
first error comes from statistics and accumulated extrapolation systematics; the second
comes from the uncertainty in scale setting with r1 = 0.318+0.000

−0.007 fm.



Conclusions

◮ We study the bottomonium and charmonium systems with the Fermilab method and
we reproduce successfully important features of the quarkonium spectrum.

◮ The size of the discretization effects is as expected from the theory.

◮ The tuning error in κ is significant for spin-dependent splittings.

◮ Future plans:

⊲ Statistics is increased up to 4 times.

⊲ Ensembles with lattice spacings of 0.06 and 0.045 fm are now available. Should
bring bottomonium discretization effects to under 1%.

⊲ Further improvements of the Fermilab action (p4 corrections).

⊲ Significantly improve κ-tuning errors.


