Muon Acceleration J. Scott Berg Physics Department Brookhaven National Laboratory Muon Accelerator Program Review Fermilab, August 24–26, 2010 ## Muon Acceleration Goals & Parameters | | v ractory | μ collider | |---------------------------------|--------------------|--------------------| | p_i (MeV/c) | 220 | ? | | p_f (GeV/ c) | 25 | 750 | | $arepsilon_{n\perp}$ (μ m) | 6000 | 25 | | $arepsilon_{n\parallel}$ (mm) | 25 | 70 | | Repetition rate | 50 | 15 | | Trains/pulse | 3 | 1 | | Muons/train | 4×10^{11} | 2×10^{12} | | Bunches/train | ≈ 23 | 1 | # Primary Design Goal Hardware Efficiency - Re-use RF systems: multiple passes - Cost inversely proportional to passes - Arcs needed to return beam to RF - Cost depends on type of system - Use different types of accelerators for different energies - Choose most efficient type - More efficient types won't work (or will be less efficient) at lower energies ### **Neutrino Factory** - Well-defined acceleration scenario - Linac to 0.9 GeV - Make beam sufficiently relativistic - Reduce relative energy spread and beam size - Two 4.5-pass "dogbone" RLAs to 3.6/12.6 GeV - FFAG to 25 GeV: 12.5 turns - Good efficiency ## Neutrino Factory R&D Tasks - Finalize injection/extraction design for FFAG - Kickers and septa very challenging - May affect final FFAG lattice parameters - Full system simulation with realistic magnet fields - Transfer lines and matching between stages - Verify that FFAG is more cost-effective than RLA - Rough relative costing, from scaling up RLA design - High gradient in 201 MHz superconducting RF # Muon Collider Initial Design Configuration - After v factory acceleration, fast ramping synchrotrons to 750 GeV - Large number of passes through RF - Efficient use of RF power - Can create high synchrotron tune: stabilize collective effects - Higher energy, longer ring: time to ramp magnets and top off RF - Two stages - □ Ramping synchrotron to ≈400 GeV - Hybrid ramping synchrotron to 750 GeV ## Muon Collider Power Efficiency - 7 MW of muon beam power at end - Power efficiency Energy delivered to beam RF energy delivered to cavity - High efficiency, low RF power requirements - Efficiency depends on product of - □ Fractional energy extraction per bunch (train) - Larger for higher frequency RF - Larger with higher charge - Number of turns (like hardware efficiency) - Product ideally \approx 4 (1.3 GHz RF: \approx 24 turns) #### Collective Effects - Beam loading w/ high current - $\square \approx 8.3\%$ energy extraction per pass for 1.3 GHz - Large additional contribution from HOMs, etc. - Small vacuum chamber in ramped magnets - Mitigation - Lower frequency RF - Strong synchrotron oscillations - Distribute RF around ring: arc/ring act like mini-ring - Mode coupling viewpoint: higher v_s separates modes - Chromaticity - □ Few turns, growth tolerable? # Hybrid Ramping Synchrotron - Keep average field high: mix - Fixed-field superconducting dipoles - □ Ramped (-1.8 T to +1.8 T) warm dipoles - Closed orbit changes during acceleration ### Muon Collider Acceleration R&D Tasks - Hybrid lattice design needs to be optimized - □ Time of flight constant (RF synchronization) - Tunes constant - Minimize orbit variation - Smaller aperture, smaller power supply - Chromatic correction - Determine best way to insert RF - More RF sections better - Higher synchrotron tune, collective instability suppression - RF/drift in each cell - Dispersion suppressed sections - Suppress orbit variation also # Muon Collider Acceleration R&D Tasks - Understand limits/costs of ramping magnets and power supplies - Study high charge/impedance collective effects ## Planning in First Years Acceleration Milestones - FY11: Specify ν factory μ acceleration initial configuration - FY13: Specify μ collider μ acceleration initial configuration # Planning in First Years R&D Goals - o FY11 - Final details & simulations for v factory initial configuration - \Box Lattice designs for μ collider - Basic understanding of collective effects - FY12 - \Box Finalize μ collider lattices, incorporating collective - \square μ collider simulations with collective effects - \square Study ν factory acceleration with μ collider beam - o FY13 - \square Simulations of full μ collider acceleration ### Summary - v factory design essentially settled - □ Need to know 201 MHz SCRF capabilities - \circ Fast ramping synchrotrons are an efficient way to accelerate muons for a μ collider - Make many turns - Strong synchrotron oscillations to stabilize collective effects - \circ RLA should be a feasible fallback for the μ collider