

Muon Acceleration

J. Scott Berg
Physics Department
Brookhaven National Laboratory

Muon Accelerator Program Review Fermilab, August 24–26, 2010

Muon Acceleration Goals & Parameters

	v ractory	μ collider
p_i (MeV/c)	220	?
p_f (GeV/ c)	25	750
$arepsilon_{n\perp}$ (μ m)	6000	25
$arepsilon_{n\parallel}$ (mm)	25	70
Repetition rate	50	15
Trains/pulse	3	1
Muons/train	4×10^{11}	2×10^{12}
Bunches/train	≈ 23	1

Primary Design Goal Hardware Efficiency

- Re-use RF systems: multiple passes
 - Cost inversely proportional to passes
- Arcs needed to return beam to RF
 - Cost depends on type of system
- Use different types of accelerators for different energies
 - Choose most efficient type
 - More efficient types won't work (or will be less efficient) at lower energies

Neutrino Factory

- Well-defined acceleration scenario
- Linac to 0.9 GeV
 - Make beam sufficiently relativistic
 - Reduce relative energy spread and beam size
- Two 4.5-pass "dogbone" RLAs to 3.6/12.6 GeV
- FFAG to 25 GeV: 12.5 turns
 - Good efficiency

Neutrino Factory R&D Tasks

- Finalize injection/extraction design for FFAG
 - Kickers and septa very challenging
 - May affect final FFAG lattice parameters
- Full system simulation with realistic magnet fields
- Transfer lines and matching between stages
- Verify that FFAG is more cost-effective than RLA
 - Rough relative costing, from scaling up RLA design
- High gradient in 201 MHz superconducting RF

Muon Collider Initial Design Configuration

- After v factory acceleration, fast ramping synchrotrons to 750 GeV
 - Large number of passes through RF
 - Efficient use of RF power
 - Can create high synchrotron tune: stabilize collective effects
 - Higher energy, longer ring: time to ramp magnets and top off RF
- Two stages
 - □ Ramping synchrotron to ≈400 GeV
 - Hybrid ramping synchrotron to 750 GeV

Muon Collider Power Efficiency

- 7 MW of muon beam power at end
- Power efficiency

Energy delivered to beam

RF energy delivered to cavity

- High efficiency, low RF power requirements
- Efficiency depends on product of
 - □ Fractional energy extraction per bunch (train)
 - Larger for higher frequency RF
 - Larger with higher charge
 - Number of turns (like hardware efficiency)
- Product ideally \approx 4 (1.3 GHz RF: \approx 24 turns)

Collective Effects

- Beam loading w/ high current
 - $\square \approx 8.3\%$ energy extraction per pass for 1.3 GHz
- Large additional contribution from HOMs, etc.
- Small vacuum chamber in ramped magnets
- Mitigation
 - Lower frequency RF
 - Strong synchrotron oscillations
 - Distribute RF around ring: arc/ring act like mini-ring
 - Mode coupling viewpoint: higher v_s separates modes
 - Chromaticity
 - □ Few turns, growth tolerable?

Hybrid Ramping Synchrotron

- Keep average field high: mix
 - Fixed-field superconducting dipoles
 - □ Ramped (-1.8 T to +1.8 T) warm dipoles
- Closed orbit changes during acceleration

Muon Collider Acceleration R&D Tasks

- Hybrid lattice design needs to be optimized
 - □ Time of flight constant (RF synchronization)
 - Tunes constant
 - Minimize orbit variation
 - Smaller aperture, smaller power supply
- Chromatic correction
- Determine best way to insert RF
 - More RF sections better
 - Higher synchrotron tune, collective instability suppression
 - RF/drift in each cell
 - Dispersion suppressed sections
 - Suppress orbit variation also

Muon Collider Acceleration R&D Tasks

- Understand limits/costs of ramping magnets and power supplies
- Study high charge/impedance collective effects

Planning in First Years Acceleration Milestones

- FY11: Specify ν factory μ acceleration initial configuration
- FY13: Specify μ collider μ acceleration initial configuration

Planning in First Years R&D Goals

- o FY11
 - Final details & simulations for v factory initial configuration
 - \Box Lattice designs for μ collider
 - Basic understanding of collective effects
- FY12
 - \Box Finalize μ collider lattices, incorporating collective
 - \square μ collider simulations with collective effects
 - \square Study ν factory acceleration with μ collider beam
- o FY13
 - \square Simulations of full μ collider acceleration

Summary

- v factory design essentially settled
 - □ Need to know 201 MHz SCRF capabilities
- \circ Fast ramping synchrotrons are an efficient way to accelerate muons for a μ collider
 - Make many turns
 - Strong synchrotron oscillations to stabilize collective effects
- \circ RLA should be a feasible fallback for the μ collider