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Universe May Never Be the Same

Discovery on Neutrino
Rattles Basic Theory
About All Matter

: e
By MALCOLM W. BROWNE

TAKAYAMA. anan June 5 — In
what colleagues hailed as a historic
landmark, 120 physicists from 23 re-
search Institutions in Japan and the
United States announced today that
they had found the existence of mass
in a notorfously elusive subatomic
particle called the neutrino

The neutrino, a particle that car-
ries no eclectric charge, is so light
that it was assumed for many years
to have no mass at all. After today's
announcement, cosmologists will
have to confront the possibility that
much of the mass of the universe is
In the form of neutrinos. The discov-
ery will also compel scientists to
revise a highly successful theory of
the compaosition of matter known as
the Standard Model.

Word of the discovery had drawn
some 300 physicists here to discuss
neutrino research. Among other
things, they said, the finding of neu.
trino mass might affect theories
about the formation and evolution of
galaxies and the ultimate fate of the
universe. If neutrinos have sufficient
mass, thelr presence throughout the
upiverse would Increase the overall
mass of the universe, possibly slow-
ing its present expansion,

Others said the newly detected but
as yet unmeasured mass of the neu-
trino must be too small to cause
cosmological effects. But whatever
the case, there was general agree-
ment here that the discovery will
have far-reaching consequences for
the investigation of the nature of
matter

Speaking for the collaboration of
sclentists who discovered the exist-
ence of neutrind mass using a huge
underground detector calied Super-
Kamiockande, Dr. Takaaki Kajita of
the Institute for Cosmic Ray Re-
search of Tokyo University sald that
all explanations for the data collect-
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ed by the detector except the exist-
ence of neutrino mass had been es-
sentially ruled out

Dr. Yoji Totsuka, leader of the
coalition and director of the Ka-
mioka Neutrino Observatory where
the underground detector is situated,
30 miles north of here in the Japan
Alps, acknowledged that his group's
announcement was “‘very strong,'
but said,

Continued on Page Al4

Stephen Parke

“We have investigated all .

)/??) @Taka,am
June 1998

Atm osph eric. neutnine results

from SUPer-Kamio/mnde % Kamio/(ano(c

5 . Evidence ][O,A oscil(&ﬁons =

| T- Kajif’a
Kamioka observatory, Univ. of Tokye

1 kz‘m[olcan de

‘ Collaborations
\ Super- /@m‘akam(e aeory 1o

:Fr_:r' ‘Hk(,

http://www-sk.icrr.u-tokyo.ac.jp/nu98/scan/

5+ Years ago

Academic Lecture 2014 @ Fermilab 1/14/2014



Neutrino Mass:

postpone for later whether:
Majorana (2 component) or Dirac (4 component)

Two different L/FE scales have been observed:

e Atmospheric L./ E = 500 km/GeV and Solar L/ E = 15,000 km/GeV

Except: LSND, miniBooNE, reactor anomaly, gallium anomaly.
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Nu Masses:.
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Parametrization of PMNS:

Atmospheric/Accelerator v's 0v33 decay
1 13 size” " Cl2  S12 1
Uai = C23  S23 1 —S12 €12 e
—893 (23 —s13€% C13 1 eV

Reactor/Solar v's

L/E = 500 km/GeV 500 km /GeV 15 km /MeV
s
C13C12 C13512 S13€
_ 5 5
= —C23812 — S13523C12€" C23C12 — $13523512€" C13523
5 5
523512 — S13C23C12€" —8923C12 — 513C23512€'°  C13C23
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Neutrino Mixing Matrix: PMNS

Ve Uel UeQ UeS V1

smaller v,
V’u — U,ul U’uz U’ug %) content
|Uel|2 > |Ue2|2 > |Ue3|2
Vr UTl U7'2 UTS V3
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Neutrino Mixing Matrix: PMNS

SNO CC
R L
KamLAND eactor/LBL
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Neutrino Mixing Matrix: PMNS

: SNO CC
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Neutrino Mixing Matrix: PMNS
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Neutrino Standard Model:

‘Uozj‘Q - -
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Disappearance Experiments: 5m§ff and sin” 20c1¢

. ™
Pvg —vy) = 1-— 4|U041|2|Uoé2|2si1r12 Aoq
—4|Uas]?(1 = |Uas|?) {resin® Asy + (1 — 7o) sin® Asgy}
\ Y,
5m2-L |Uvozl|2
A — 4 where r, =
1] A1FE (|Ua1|2 =+ |Ua2|2)
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Disappearance Experiments: 5m§ff and sin” 20c1¢

4 )
Pvg —vy) = 1-— 4|U041|2|Uoé2|2si1r12 Aoq
—4|Uas]?(1 = |Uas|?) {resin® Asy + (1 — 7o) sin® Asgy}
\_ J
A = 5m@23'L where r, = lUOd'Q
ii = 1B Y (JUa|? + |Ua2|?)

For Agl — Agg — Agl K 1 Tl’lg |D

rosin®As; + (1 — ro)sin’Agy = sin’(roaAsy + (1 — 74)Asg)+O(AS)
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Disappearance Experiments: 5m§ff and sin” 20c1¢

4 )
Pvg —vy) = 1-— 4|U041|2|Uoé2|2si1r12 Aoq
—4|Uas]?(1 = |Uas|?) {resin® Asy + (1 — 7o) sin® Asgy}
\_ J
A = 5m@23'L where r, = lUOd'Q
ii = 1B Y (JUa|? + |Ua2|?)

For Agl — Agg — Agl K 1 Tl’lg |D

rosin®Asg; 4+ (1 — r4)sin"Asy = sin’(rals1 + (1 — rq)Asy)+O(AL)

— Sin2($A31 —I— (1 — CU)A32)+O(A21) fOI' X # Ta

A -9
C 3
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Disappearance Experiments: 5m§ff and sin” 20c1¢

4 )
Pvg —vy) = 1-— 4|U041|2|U052|2Sin2 Aoq
—4|Uas]?(1 = |Uas|?) {resin® Asy + (1 — 7o) sin® Asgy}
\_ J
A = 5m@23'L where r, = lUOd'Q
ii = 1B Y (JUa|? + |Ua2|?)

For Agl — Agg — Agl K 1 Tl’lg |D

rosin®Asg; 4+ (1 — r4)sin"Asy = sin’(rals1 + (1 — rq)Asy)+O(AL)

— SiIlQ(wAgl —I— (1 — CU)A32)+O(A21) fOI' X # Ta

Daya Bay: sin’ A, = C%2 sin® Ag; + 322 sin® Asgs, Which L/E 7

Jt
L 2
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Disappearance:

—> near the 1st Oscillation Minimum,
where A3y &~ 7/2 and therefore AZ, ~ 3 x 10~°

e | hree flavor effects are invisible until AP < 0.003

9
Use: P(ry, — v,) =1 — sin® 20, sin” Mif]i;aL | O(Agl)

e where the effective §m? measured is

dMige = Taldmgy| + (1 — 1a)|dma,]
v, weighted average of |dm3,| and |§m2,|
e and the effective mixing angle, 6., is given by

sin® 20,0 = 4|Uqs]? (1 — |Uas|?)

defined in Nunokawa, Zukanovich Funchal and SP: hep-ph/0503283
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Disappearance Experiments:

v, — Uy,
4|U,,3]%(1 — |U,3|?): hard to get precision on |U,3|* near 1/2

the Am?* measured is v, weighted average of |Am3,| and |[Am3,]

Ve — ’76
precision measurement of |U.3|? and |U,|?

Mass Hierarchy is very challenging!!!
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Reactors Experiments at 50-60km

.. . 92
e Precision measurement of sin” 645

e Mass Hiearchy?
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Reactors Experiments at 50-60km

.. . 92
e Precision measurement of sin” 645

e Mass Hiearchy?

- | | :
- L= 60.km o= 0.%/sqrt(E/MeV) 1

a= 1. —:
32 fixed

Il’nrkt? 20 1|2 -

L/E (km/MeV)
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Reactors Experiments at 50-60km

.. . 92
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Float between these Two:

- _| float within
0.9 4 uncertainities
B Parke 2012 —
00 1
10 20 30 40
# 13
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Float between these Two:

| float within
uncertainities

0.5

0.0

Constraining the non-linearity of the detector energy scale at better than 1% is required!

KamLAND achieved 1.9%

see arXiv:1208.1551

L,
ar 13
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Neutrino Mass Squared

Variation of Flavor Content & CPV:

0 <0 <27

’ COs 0 =
Sin 923 1
31 ]
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2
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, (| 2. s
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sol
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Sil’l2 923
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CPT = invariant 6 «— —¢
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Fractional Flavor Content varying cos ¢

Academic Lecture 2014 @ Fermilab

1/14/2014

14



