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A statement of the problem

RF cavities in cooling channel conditions are limited by
breakdown phenomena.
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Strong magnetic fields limit cavity gradient.

Figure: Maximum achievable
gradient affected by magnetic field
strength [Palmer et al., 2009].

Figure: Similar phenomenon
observable during button tests
[Huang et al., 2007]. Coupler
problems?
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A few words of caution before we begin.

RF breakdown is a very interesting problem.



RF

Breakdown

and MAP

Daniel

Bowring

Introduction

Current

Understanding

Field Emission

Physics

MAP-Specific

Issues

Conclusions

Bibliography

Supplemental

Slides

A few words of caution before we begin.

RF breakdown is a very interesting problem.

RF breakdown is a very old problem.
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A few words of caution before we begin.

RF breakdown is a very interesting problem.

RF breakdown is a very old problem.

There is very likely no “magic bullet” solution.
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A few words of caution before we begin.

RF breakdown is a very interesting problem.

RF breakdown is a very old problem.

There is very likely no “magic bullet” solution.

Our priority is a functioning cooling channel.
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A General Picture Of Breakdown
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The Conventional Picture

Microscopic E -field
enhanced to GV/m levels.

Local F-N field emission
currents approach
1011 A/m.

Joule heating vaporizes
surface features.

Cu particles ionized by
emitted e−.

Sheath forms, enables
further emission.

Explosion, melting, craters
[Loew and Wang, 1999].

Figure: Cartoon of the emission
process [Mesyats, 1983].
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There are problems with the conventional picture.

Empirical observation of
frequency-dependence.

5 < β < 8 measured.
40 < β < 60 required by theory
[Wang and Loew, 1989]. β > 50
not observed
[Descoeudres, 2009].

Geometric β ∼ h/r . Hard to
measure directly
[Norem et al., 2003].

Measuring 〈jFN〉 also imprecise.

Figure: Damage area from
open-cell 805 MHz cavity
[Norem et al., 2003].
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Things get very complicated, very quickly.

NOT FROM A CAVITY.

Cu nanowires grown, 〈β〉 = 245 from FESM. Form factor
predicts a factor of 3 lower. AND only 6% of them are strong
emitters [Maurer et al., 2006].
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A priori models are difficult.

Figure: Vary geometry, study rf
properties
[Dolgashev et al., 2010].

Test geometry-dependence
of 11.242 GHz accelerating
structures
[Dolgashev et al., 2010].

BD rate independent of
fabricating lab, Cu type
(OFHC, etc.).

Surface treatment did not

affect BD rate. Did
improve conditioning time.
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Correlation of geometry with RF properties (1)

Figure: Vary geometry, study rf
properties
[Dolgashev et al., 2010]. Figure: Gradient correlation with

BD probability.
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Correlation of geometry with RF properties (2)

Figure: Vary geometry, study rf
properties
[Dolgashev et al., 2010]. Figure: Peak electric field

correlation with BD probability.
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Correlation of geometry with RF properties (3)

Figure: Vary geometry, study rf
properties
[Dolgashev et al., 2010]. Figure: Peak magnetic field

correlation with BD probability.

NB: It is not correct to say “magnetic field causes breakdown”!
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Contribution of pulse length is also studied.

Varying pulse length shows strong correlation between BD
probability and pulsed heating [Dolgashev et al., 2010].
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Very recent work on pulsed heating looks

promising.

Figure: TE011 cavity has no surface electric fields, applies magnetic
fields to small, removable samples [Laurent et al., 2011].
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Pulsed heating experiments show material behavior.

[Laurent et al., 2011].
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Mushroom cavity results

Figure: Results from [Laurent et al., 2011].
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Mushroom cavity results

Figure: Results from [Laurent et al., 2011].
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Mushroom cavity results

Figure: Results from [Laurent et al., 2011].

NB: This tells us nothing about field emission!
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In Summary

Even without strong magnetic fields, BD is difficult to
understand.

It’s generally accepted that field emission plays a role in
triggering breakdown events.

Many cavities tested over many years, and still very little
definitive knowledge of BD physics.
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It’s even harder for low-frequency cavities.

An observation: 201 MHz cavities are large and therefore
expensive. How can we hope to approach this level of
statistical understanding?



RF

Breakdown

and MAP

Daniel

Bowring

Introduction

Current

Understanding

Field Emission

Physics

MAP-Specific

Issues

Conclusions

Bibliography

Supplemental

Slides

Field Emission Physics
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Field Emission

Considering the Fowler-Nordheim equation:

〈j〉 =
5.7 × 10−12 · 104.52φ

−0.5

φ1.75
(βEs)

2.5 exp

(

−
6.53× 109 · φ1.5

βEs

)

φ is the work function of the metal, measured in eV.

It is usually taken as a constant.

φ is not constant. It changes depending on grain
orientation [Smoluchowski, 1941], and also depending on
the local crystal strain [Chow and Tiller, 1984].

An examination of variations in φ may resolve some of the
inconsistencies involved in β-oriented measurements and
calculations.
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φ changes with surface structure.

Figure: A qualitative argument that tips alter the surface dipole layer
[Chow and Tiller, 1984]. (See paper for a quantitative argument.)
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φ changes with fatigue cycling.

Figure: ∆φ used to predict fatigue damage [Levitin et al., 1994].
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〈j〉 vs. φ

The average work function of copper is ≈ 4.5 eV.
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Figure: Average FE current for varying work function, using 4
different values of β. E = 50 MV/m.
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MAP-Specific Issues
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Breakdown in strong magnetic fields is even less

well understood.

Figure: Maximum achievable gradient affected by magnetic field
strength [Palmer et al., 2009].
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Theory: Beamlet focusing.

Figure: Emitted e− path,
B = 0 T.

Figure: Emitted e− path,
B = 0.5 T.

Field emission from surface defects.

Emitted electrons focused into “beamlet” by solenoidal
B-fields.

Beamlet heats opposite surface, causing fatigue, damage.

Damage instigates breakdown [Stratakis et al., 2010].
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Beamlets create pulsed heating effect on opposite

wall.

Figure: Temperature rise vs. magnetic field strength for various
gradients [Stratakis et al., 2010]. Please recall [Laurent et al., 2011].

NB: Experience with X-band structures suggests ∆T < 50 K is
a “safe” operating point. Not much experience to inform
< 1 GHz operation.
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A few experiments are possible here.

Beryllium wall cavity experiments (see
Derun Li’s talk)

“Anti-button” tests suppress FE in
beamlet damage region (see cartoon).
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Briefly, we observe damage consistent with this

model.

= Regions where we 

observe damage.

Figure: Current 805 MHz cavity. Electric field modeled using ACE3P.
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Modeling Breakdown

A localized “plasma spot” in the cavity may explain
behavior during breakdown
[Dolgashev and Tantawi, 2002].

Ions, clusters in the cavity trigger this process.

These particles have several possible sources
[Norem et al., 2005]:

Fracture / field evaporation: E-field tensile stresses pull Cu
atoms off surface.
Surface currents + surface defects → large field
enhancements.

Ionization of clusters from field-emitted electrons.

Given the complexity of the cavity surface (grain boundaries,
asperities, etc.) one can imagine this getting very complicated,
very quickly.
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Experimental apporach: atomic layer deposition.

Several aspects of this model require field enhancements at a
rough surface. Fix this with ALD.

Figure: [Norem, 2011]
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Computational approach: PIC, MD simulations

A clear understanding of the breakdown process may suggest
surface treatments, material choices.

Figure: [Norem et al., 2005]
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Change stored energy in cavity to change plasma

properties.

demountable end-plates

variable cavity 

lengths

This sort of test is possible with the new modular Be wall
cavity design. (See D. Li’s talk.)
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The magnetoplastic effect

Strong DC magnetic fields can influence the plasticity of even
non-ferrous metals!

Figure: Magnetic field changes
flow stress in Cu
[Galligan et al., 1977].

Figure: Applied B-field changes
dislocation path length
[Molotskii and Fleurov, 2000].



RF

Breakdown

and MAP

Daniel

Bowring

Introduction

Current

Understanding

Field Emission

Physics

MAP-Specific

Issues

Conclusions

Bibliography

Supplemental

Slides

The magnetoplastic effect

Why? B-field changes spin multiplicity in dangling dislocation
end bonds. Increase in fraction of occupied triplet states with
lower binding energy. This increases plasticity [Molotskii, 2000].

Dislocation motion is inhibited via, e.g., solid solution
hardening. See [Laurent et al., 2011].
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Quantifying < jFN > vs. B

1-button experiments using a Faraday cup. This should be
coupled with careful surface analysis.

Faraday cup

Be window

various 

button 

materials
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Conclusions

Complex subject + short talk → I’ve left out a lot of
interesting stuff.

Many good experiments possible.

Growing consensus: The cavity surface is not simple.

No need to pick only one BD model. Why should these
processes be exclusive?

What experimental choices advance the cause of a cooling
channel?
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An cartoon showing precipitation hardening

http://aluminum.matter.org.uk, by the European
Aluminum Association and the University of Liverpool.
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What other mechanisms may possibly

contribute to RF breakdown?
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Other mechanisms for future thought

Malter effect: Enhanced secondary electron yield from
oxide, contamination on conductor surface
[Malter, 1941, Koller and Johnson, 1937].

Electromigration: Large surface currents contribute to
surface deformation [Antoine et al., 2011].
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