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Overview

Representatives from MicroBooNE, DUNE 35t,and DUNE
Two sessions:

* Detector Operations

* “Detector Physics” Measurements

But topics really were:
* Cryogenics
* High Voltage
* Electronics Noise and Performance
* Photon system
* Monitoring tools
e Detector Performance/Calibrations
e Measurements
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Cryogenics

MicroBooNE cryogenics overall very successful:
* Demonstrated “piston purge” technique
* Achieved remarkable purity levels (electron lifetimes > 9 ms) quickly
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Cryogenics

MicroBooNE cryogenics overall very successful:

* Biggest hiccup may have been dealing with LAr vendors to get desired initial
purity delivered on time

* One failed pump (Barber Nichols)

* Also had some temperature stratification during fill---solved with heaters for
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Cryogenics

35 t cryogenics not as smooth:
* Best achieved purity gave lifetime of ~4.5 ms
* A lot of purity stratification seen during initial “Phase 2” run

4.0+ 2,000

364 1,800

PC4_S1.AESS5V.F_CV
b=
1

35T.PRM _Lifetime_1.F_CV

Tracked with temperature stratification



Cryogenics
35 t cryogenics not as smooth:

* Best achieved purity gave lifetime of ~4.5 ms
* A lot of purity stratification seen during initial “Phase 2” run

Liquid Return
Velocity B s
Al 1[I \
128 | NAS : - >
I : —

Liquid Return

O aNNWED©

[mm s”-1]

; ——Pump Suction

o ——
= 0 1 i
g T l I
wy
> 1
2
2
2o | p——— [ fe==en
< 3
@04z u =
3 o =,
LT = v

5 ——

s

1:19:30 PM



Cryogenics
35 t cryogenics not as smooth:
* Failure of tubing on compressor spoiled entire 35 tonne argon volume in 30 min

Lesson learned: Don’t do this.



Cryogenics
35 t cryogenics not as smooth:
* Submersible pumps are problematic and frustrating
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MicroBooNE had "bursts”’ of noise associated with cathode HV transients:

Resistor Chain at
this end

Pickoff Point

High Voltage
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High Voltage

Tour de force investigation (about | month of downtime):

* Exploited MicroBooNE HV pickoffs and ability to connect test supplies
* All the while running both TPC and PMTs and doing offline analysis

* Ultimately tracked problem down to supply connection to cathode

* And discovered... e

Tightening bellows to move
feedthrough fixed the
problem




High Voltage

Lessons learned:

* Accessible/configurable pickoff points to test HV

* [Also need good QA/QC during installation]

e Taking both TPC and PMT data while doing tests is critical

* Feedthrough is a single-point failure and difficult to access---making this serviceable,

or redundant would be a big win

No explicit discussion (in slides) of why MicroBooNE HV not at original design---not sure
if this was just because lifetime is good enough not to need it or there were other issues.



Electronics Noise

MicroBooNE first LAr TPC to use cold front-end ASICs.
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Electronics Noise

Three “excess” (above intrinsic 500 e) noise sources found:

|. Low frequency coherent noise from (warm) voltage regulators

2. Ripple from cathode HV power supply capacitively coupled from cathode to anode
3. Burst or “zig-zag” noise



Electronics Noise

Three “excess” (above intrinsic 500 e) noise sources found:
|. Low frequency coherent noise from (warm) voltage regulators

10-30 kHz regulator noise spanned several channels and initially was mitigated with
offline subtraction. As of last Summer, new service boards with better regulators

replaced originals:
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Electronics Noise

Three “excess” (above intrinsic 500 e) noise sources found
2. Ripple from cathode HV power supply capacitively coupled from cathode to anode

Sample of Correlated Waveforms

20
= U Wires 961 to 1009

15 —  V Wires 1633 to 1681
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Time Ticks [500 ns]

Worst wire plane (u) is the one closest to cathode.

Initially mitigated by frequency-domain filtering of such sharp harmonics.
Noise eventually suppressed with additional filtering on HV system added in 2016.



Electronics Noise

Three “excess” (above intrinsic 500 e) noise sources found:
3. Burst or “zig-zag” noise

15 Example of Zig-Zag Region Identified
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Source is unknown but for MicroBooNE high enough in frequency to be filtered by
nominal 2us shaping time.



Electronics Performance

Table 1. Summary of the non-functioning channels for Run 3455 Event 6. A total of ~862 channels are
considered non-functioning. MB stands for front-end motherboard.

# non-functioning channels | Reason
~20 ASIC saturation
96 6 ASICS on one MB not connected to wires
304 19 ASICs due to start-up problem
126 channels sorrounding U-Y shorted wires with 10 noisy channels
287 channels sorrounding U-V shorted wires with 28 noisy channels
36 noisy channels not located near the shorted wires

About 10% of total but since only need 2 wires/hit, overall impact just 3%.



Electronics Noise

DUNE 35 t first LAr TPC to use cold front-end ASICs and ADCs.

 Saw similar noise as MicroBooNE (e.g. regulators)
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Electronics Noise

DUNE 35 t first LAr TPC to use cold front-end ASICs and ADCs.

* But also a “high noise state” that made detector unusable and could persist for hours.
Oscillatory noise Transients
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Cause of this unknown. [But some (Johnson, Rivera,Van Berg) have argued this is a more extreme version of
MicroBooNE “zig-zag” noise, exacerbated by cold ADCs and wire length or configuration, and that the system is

intrinsically unstable. Others have argued it was caused by an imperfect Faraday cage and grounding. ProtoDUNE
and/or SBND may resolve the question].



Electronics Performance
DUNE 35 t first LAr TPC to use cold front-end ASICs and ADCs.

* ADG:s also had “stuck code” problem that added complexity for analysis.
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Mitigated with software interpolation.

[Dune is no longer pursuing this particular cold ADC technology.]



Electronics Noise

LArIAT also used cold Front-end ASICs (but warm ADCs)

* Very good noise levels (270 e), lower than MicroBooNE in part because of shorter wires
* Allowed discovery of pole-zero problem in ASIC
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“Detector Physics”

MicroBooNE Calibrations (lifetime, space charge, diffusion, recombination)
MicroBooNE Michel electrons

MicroBooNE muons and cosmic tracker

DUNE 35 t analysis techniques

LArIAT physics



MicroBooNE Calibrations

Focus on four linked measurements:
* Space charge

* Electron lifetime

* Electron-ion recombination

* Electron diffusion

Example: calorimetry

Energy lost by




Focus on four linked measurements:

MicroBooNE Calibrations

* Space charge---in a surface detector cosmics build up charge distorting field locally

Calculation of spatial

distortions due to local field
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MicroBooNE Calibrations

Focus on four linked measurements:
* Space charge---in a surface detector cosmics build up charge distorting field locally

“Importance of Laser System, Cosmic Ray Tagger system, cannot be [over]stated.”

[N.B. DUNE FD currently has no planned laser or tagger.
(But space charge at least should not be an issue)]

[N.B. ProtoDUNE-SP will not have a laser.]



MicroBooNE Calibrations

Focus on four linked measurements:

 Electron lifetime

Measured using cosmics that cross both anode and cathode

MicroBooNE Preliminary
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Uncertainty (%)

Space charge correction 5.0
Recombination model 1.0
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Total 5.5
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MicroBooNE Calibrations

Focus on four linked measurements:
e Recombination

- Birk's Model and Modified Box Model

R B Ap In(a + ﬁ—g . ‘é—f)
Birk's = " kp [ dBE 1 RaodBos = By . dE
de & o€ dz

More details in W11 :100VLoJ5
b

D. Carateli’s Identification of
cERth talk

stopping muons
improving---good to
have samples “centrally
available.”

ATA : RUN 4487 EVENT 104. January 12 2016

There are strong opinions about
whether recombination
parameters are universal and
measurable entirely ex situ.



MicroBooNE Calibrations

Focus on four linked measurements:
e Diffusion

Longitudinal and transverse---difficult to measure due to dependence on other things.

Image credit: A. Lister
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NUMBER OF EVENTS PER 0.625 MeV/c

Michel spectrum spans

PRL, 14, 449 (1965)
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MicroBooNE Cosmic Tracker

CRT allows measurement test of straight-track reconstruction

Incident angles (6, ¢)
Expected track length L

€(6,9,L)= N. of reco events

N. of MuCS triggered events
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No. track intersections (no units)

DUNE 35 t Analysis Techniques

Despite noise problems and reduced running time, lots of analyses possible

Work in Progress

Distribution of expected counter position,
used to figure out the alignment of the
external cosmic trigger counters relative to
the wires.
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40

20

IIlIIlIIlIIIIIIlIIIIIllI]lIlI

[_"'|"'|"'|"'|"'|"'|"'|'

T Co b L L T
20 -10 O 10 20 30 40 50

Candidate paddle X position (cm)



DUNE 35 t Analysis Techniques

Despite noise problems and reduced running time, lots of analyses possible

6000 250
g

First “APA crossing” events in LAr TPC---used to show

~ 32 ps offset in timing between cosmic trigger counters
and TPC.

150
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DUNE 35 t Analysis Techniques .

X (mm)
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DUNE 35 t Analysis Techniques
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DUNE 35 t Analysis Techniques

K. Warburton
M. Stancari
* Longitudinal diffusion can be g | | —
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LArIAT and Test Beam Detectors

TPC Front Face
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LArlAT and Test Beam Detectors

* Need realistic beam simulation to get track pitch reconstruction correct
Tracks Pitch
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* Need to reduce beam halo! [N.B. ProtoDUNE has a large halo]
* Position and momentum determination as close as possible to TPC
* As little material as possible [ProtoDUNE has a low-mass beam plug]



LArlAT and Test Beam Detectors

* Particle ID must use more than just “residual range” curves---topology matters!
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* Particle ID must be tested on real data. [DUNE ND may not be LArTPC]



Not Included Here

Monitoring tools
35 t HV test

LArIAT Photon System
Deep Learning Techniques



Conclusions

Suite of FNAL LArTPCs is teaching us many things that will be important for DUNE
State-of-the-art is still somewhat immature, but hope for milestones very soon
Critical to see precision science from these detectors soon

protoDUNE will be a critical technical step (e.g. noise environment?)

SBND will be critical scientific step

There is not that much time.



