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Brief prologue
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Outline

Preamble...Chris’s opening talk at NuFact99
What we know now

First lights and next steps

Neutrino factory ideas now...

Conclusion:
Are we following Chris’s advice?



Neutrino Factories in ‘99

 Picture the scene...neutrino oscillations
“discovered” after decades-old hints

* Fringe element is very excited about neutrino
factories...first NuFact conference held in Lyon
Protons L vy V,
i e GERED B
cool,accelerate ~ Shielding
decay
 Neutrino factory seems like perfect place to be:

— M+9e+vev—u, and if in the detector you see
v,N =2 pu"X then you know you’ve seen v, - v,



What did Chris tell us?

* Don’t design the ‘
neutrino factory for
what you want to do
now, think about
what you’ll want to
know in 10 years...

e Don’t stop trying to
figure out other
ways to see oscillations, neutrino factory may not be the

only way to get there
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Outline for rest of the talk

e What we know today about neutrinos
— How they oscillate

 How to describe all these oscillation signals

— How they interact
e QOutstanding Mysteries

 Next Steps in neutrino physics:

— First Light this year for many of us

 What designs for a neutrino factory look like now
— Are we heeding Chris’s advice?



Event/day/bin
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Solar Neutrinos from Super-K

e Glorious history of solar neutrino physics:

— original goals: demonstrate fusion in the sun
— first evidence of oscillations

— Neutrino — electron Elastic Scattering
makes all this possible

0.017

— Events Seen/Expected: 0-451j0_015
| I I I I | 1 I 1 I | ]

5-20 MeV

vite 2 v+e

A -

] 22400+230 solar v events
. (14.5 events/day) -
| | | ] s | L | ] | | |

- a .

Ref: Super-Kamiokande




Solar Neutrinos a

D,O target means not only
elastic scatters can be used:

— charged-current v.d — ppe

— neutral-current vyd —> v, pn

The former is only
observed for v,

(lepton mass)

The latter for all types

b = 1. 76+0

Gur = 341707
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Precision Measurements of solar Neutrino
Sector: KAMLAND

e Sources are

Japanese
reactors
— 150-200 km
for most of
flux.
— Rate
uncertainty ~4% fE R W '.Bi‘i_'ﬂ';—::’i_:if-'ll--:iiru [ . Data—B(‘}—(}cch ‘
- — Expectation based on osci. parameters
— Total _ l:_ + determined by KamLAND
uncertainty ~6% £ 0-3;‘ e
e 1 kTon scint. detector in = OG‘TL + Ay
old Kamiokande cavern £ odb B
— Confirmation of oscillatory 0.2
nature of disappearance N TN T T T TN TR I AT
o +1.16 B : 20 30 40 50 60 70 80 90 100
012 = 34.06 7 5, degrees Ly/Eg (km/MeV)

15 December 200 A2 - 7 509 10205 105 oy2  Kamland, PRL.100:221803,2008  °



MINOS

MINOS: NuMI Beamline at
Fermilab produces v at 100x the
intensity ever produced before

Aims that beam of neutrinos
towards Soudan Minnesota

llllllll'llI[l'llli'llll!i'll

MINOS Far Detector i
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Minimal Oscillation Formalism

* If neutrino mass eigenstates: v,, v,, v,, etc.
* .. are not flavor eigenstates: v,, v, v,
e ..thenonehas,e.g.,

for now!
sin@d cosé

00377“/ +sin /‘ different
masses alter
\W o

time > — _ecilnT JC
‘vﬁ>— Sin A‘VJJFCOSA‘VJ
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_ take only two
vV, ( Cos ¢ SIn Qj V. generations

Slide courtesy K.McFarland



Oscillation Formalism (cont’d)

So, still for two generations... appropriate units

2 2
P(v, - v.) =sin’ 20sin?| e TWIL | e,
E 1.27 GeV/km-eV?
Oscillations require mass differences ~ : ST T
Oscillation parameters are S w0 S
mass-squared differences, 1{: i,
Am?, and mixing angles, 0. s | R
But remember the signals: (flj Ty
— Kamland: 3MeV neutrinos, 180km 1501 N e
— MINOS: 3000MeV neutrinos, 735km T [ e ]
There must be more \ s | i el
than two mass differences 3 SOL Ty |

O 5 10 15 203050
Reconstructed neutrino energy (GeV)



Three Generation Mixing

Lesson Learned from CKM: 3 mixing angles and a phase
Call them 619, 093, 013,0  if 5;; = sinb;;, ¢;; = cos ;4, then

(1 0 0 e 0 8136'&-‘5\H ( ¢19 s192 0)
U=|0 3 893 0 1 O —519 ¢19 0
(0 —s23 €93 k_313€_36 0 ¢33 JL O 0T,

\

Reactor

U= and/or

Accelerator

Ve

 Note the new mixing in middle, and the phase, 0



But not all mixing angles are large...

 CHOOZ and Palo Verde expt’s Y 2ap
looked at anti-v, from a reactor /
— compare expected to distance = 10 xm

observed rate, c~4%

Chooz Underground Neutrino Laboratory
Ardennes, France

1 m2_¢ If electron neutrinos don’t disappear, they
23 ) ;
don’t transform to muon neutrinos

— limits v ->v, flavor transitions at and
therefore one mixing angle is “small”

-
10 AR TE NN RN RN E RN E R R EE N FE T NN

Slide courtesy K.McFarland



MINOS Electron Neutrino Appearance
Search

e First results: consistent with no oscillations
— 35 events measured, 25+2 predicted w/o oscillations

e Very challenging analysis, Neutral Current background levels high, multiple
data-driven cross-checks needed

e Qver twice this data set already taken, results pending...

Potential Feldman-Cousins C.L. contours for ANN
20 Far Detector MINOS PRELIMINARY
T T T | T T T | T T T | T T T I T T -
lé i ANN Selected | 7.0x10%° POT
i —u= Data 1 in(20,) = 1.0
2 i ¢ NC Prediction B 15 ol slnz(“”iu_a V2
‘? 15 i % CC Prediction i - mad = 2431070
é i % Tau Prediction ]
— L % BNue Prediction _ - = BestFitAm*>0 -
ﬂ's 10— ignal Prediction — :-Ou 1 *=** Best FitA m* <0
"-_-; - . = 90% CLA m*> 0
a : : ——00CLAm?<0 |
Q i i CHOOZ 90% CL
N 5 — 0.5
= [ ]
Q B _
> i | _ :
L _ : » :
% 6 8 % 0.2 0.4 0.6
PRELIMINARY
Reconstructed Energy (GeV) sin2{2613)

15 December 2009 Ref: MINQOS, arXiv:0909.4996 [hep-ex] 15



Sterile Neutrinos

e Based on LSND result for electron
appearance at short baseline, an
industry of Sterile Neutrino
phenomenology blossomed

e Realize that there may
be several generations of |
sterile neutrinos that don’t IR AR

20 30 40 50

inte r‘a Ct With Z posiﬁ‘ou enel‘gG}?(Me\-')
 Two (of many) ways to look for sterile v’s

— Measure oscillations occurring at three independent mass
differences (MiniBooNE)

— See if the number of neutral current events is right, even if
charged current rates have changed from oscillations
(SNO, MINQS)

cvents

—
[an
T

h
I

beam excess

=
i P

'966T780€:£47dd ‘ANST :4oY



Ref: MiniBooNE,

MiniBooNE has not confirmed LSND

What we know about sterile sector:
MiniBooNE

result in either neutrinos or
antineutrinos

Rules out simple sterile v models

PRL102:101802,2009

Events / MeV

Excess Events / MeV

° Data
25 . v, from p
L* = v, fromK*
{ @ v, from K°
I ° misid
[ A—- Ny
[ dirt
B other
——— Total Background

data - expected background
best-fit V, Ve
sin?26=0.004, A m°=1.0eV?

sin?26=0.2, A m’=0.1eV?

L L L L i i P I
042 0.4 06 08 i 12 4 15
E°E (GeV)
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—— Syst. Error
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o sin“20=0.2, A m*=0.1eV*
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What we know about sterile sector:
MINOS

e MINOS sees the same number of neutral current
events in its far detector as expected (388 events
over 732km away!))

vV V - I\/IIINIOIS Preliminary
\/ —— |Far DetectorlData
60 EEsmmas 913 — 0:3 ]
7 iy 0,, = 12° & = 3m/2
E 40 = |:| v, CC Background ]
2 |Am2, | = 2.43x10% eV? -
g T T q’ =0 Sin?20,, = 1 |
20
e Neutral Current —
Sighal/expected: AL R s
0 5 10 15 20
1.04+.08+.07-.10 E... (GeV)

15 pecember 2009 Ref: Sousa et al, (MINOS), arXiv:0910.1369 [hep-ex] 18



So what do we know now?

e Mass differences:
— Oneiis large 2.5x1073eV?(+8%)
— Oneis small 8x107eV? (+2.6%)

— LSND signal 1-0.1eV?,
not consistent
with oscillations
(thanks to MiniBooNE results)

e Mixing angles:
— one is around ~45°
— one is ~35°
— one is smaller than 9°

15 December 2009




What don’t we know yet?

e Do Neutrinos violate CP conservation?
— We know there’s lots of matter in the universe, no antimatter
— We know quark sector CP violation is very small

Do neutrino mass states have the same hierarchy as the (ﬂuark
y

_ flgures courtesy B. Kayser

A

\_r ’\‘FE 2

3 A v, N } Am sol
2
(Mass)? Am atm Or Am?
atm

\_r: Y 7

\_J' } Am 501 \r_ﬁ Y
2 -5 2 2 2~ -3 2

m2~> m,,?=8x10%eV Am,. 2> 8m,,2=2.5x103eV
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Measuring v Mass Hierarchy
e Recall the 2-generation formula...

2 2
P(v, »>v,) =sin” 2¢9sin2£(m2 4;1 )L]

e Matter changes 0, L for v, and v_’s differently
v _

¢ y V e
\/ e Wolfenstein,
N PRD (1978)
i W > W < . 2V2GenE,
e - T~V — — Am’
e \A

e n =€ density

sin® 20

sin‘ 20,, =

sin” 20 + (+x —c0s20)% Lw = L x /Sin2 20 + (X — €05 20)?



Current Steps

e First things first: need to see if that last mixing
angle ©®,; is not zero gy o -

— Reactor experiments
at 2km

e Double-Chooz S ALt
* RENO C/“' o s P \

— Electron neutrino
appearance in muon
neutrino beam at
150km/1GeV

e Lessons learned here guide the path to CP
violation and matter effects

December 20 22



What else don’t we know (signal)?

 Quasi-elastic events: mysterious transition from low
to high energies

e BUT: this is the signal for Water Cerenkov Events!

— Kinematics means you can fully reconstruct neutrino
energy with muon measurements alone (given v direction)

('T. Katori)

-39
x10
V “ E 16 E_ = RFG with M =1.35 GeV
\/ o 14 '}J{:{_F =" RFG with M, =1.03 GeV
S 12E 131 D ———
b = : ] 1
+ 10:— _"—i-.__q: + * THE T
W 8 T
6 ;_ *  MiniBooNE with total error
n 4 — * NOMAD with total error (arXiv:0812.4543)

/-_-\ p 2 E_ SciBooNE with preliminary errors

0 — Ll . \ N Los v aal ) ] 1 PR T

1 RFG
10 1 10 El™ (GeV)

15 December 2009 Plot from D. Schmitz, WIN’09 plenary talk )3



What don’t we know (background)?

 Coherent neutrino scattering: now you see it, now

you don’t...

V\/
_I_
W

LKL or v

AT T

A

-_..________Li_*

nt-71
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X-Y plane

SciBooNE getting first detailed
understanding of this

Neutral Current channel is tough

searches

O < 35 deg

n* or t¥ background for v, appearance

On > 35 deg

60LNINN ‘@plediy

LT
&b (degreas) 24



Just some of the reasons to study

neutrino interactions
(note, no ordering given...)

e Because Chris Quigg said to study them...

e Because Galileo said to study them...(Quigg, Neutrino
Telescopes ‘09 proceedings)

Io stimo piu 1l trovar un vero, benche di cosa leggiera, ch’l disputar lunga-

mente delle massime questioni senza conseguir verita nissuna.d

e Because there may be non-standard interactions we’ve never
had the ability to see before (neutrino-photon interactions?)

 Because they let us see the nucleus like never before

e Because getting to CP-violation and mass ordering of
neutrinos requires it: will be looking for small probability
differences between neutrinos and anti-neutrinos

15 December 2009 25



MINERVA

e Compact, fully active neutrino detector
designed to study v-N interactions

e Detector with several different nuclear
targets allows 15t study of
neutrino nuclear effects:

e He, C, Fe, Pb (and maybe water!)
e Data below, candidate reaction given

35

o ] A i ................ i('avieiv..: ........... .................
5 X-view & B e e A e
o ‘ 30 - r
100 ® 100
= A
] -
i e & 4
s0|- e L
-:' 15 60
401 I
10 -
40
2 run: 294/6 5 i
event: 319 20
0 llll\\\\‘\\\\‘\\\\!lll{ 0
5 10 15 20 25 F-ga ; e e g i i
module nlllllIIIIIIIIiIIIIIIII B IIIIIIIIIII

VNP VHn—>e+p v An>p+nlex



MINERVA’s First (Anti-Neutrino) Light!

£

10

1
= 5§ - = 5 - = 5
I 45 : L 45 : 5 43
g 1 tower 5§ s 4F tower @ 2 a8F
w 1.5F ® 15E 4 15E

story+0.5%(bar-1}

8

]
=]

i ol i
smmwmbme B
T =
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i i
ammwmbme B
L i bl i b & [
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70720 30 40 50 60
module

Taking data with 55% of full detector + Pb, Fe, CH targets




NOVA Overview and Status

NOVA is second generation
experiment on NuMI beamline

Optimized for v v,

Upgrade of almost factor of 2 in
neutrino beam intensity (700kW)

15kton totally active liquid
scintillator (810km)

220 ton near detector (to run this

Summer above _ _ ) | Event 40 trom idataiped Foafta nuece lowED10.rond

25GeVre+p —=19GeVe + 1.1 GeVp + 0.2GeV

ground!)

Both
14mrad off

o
e,

NuMI axis,

2GeV
neutrinos




NOvA Learning about shipping

_'_W

= | = =
1

oy 7 o

JR———— 4 B e pmm :
e = -rl! Agd_dh‘-ﬂ.mdﬁ“ =TS F% N s J

15 December 2009 Photo courtesy Karen Kephart
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Ref: S. Dixon, FNAL All Experimenter’s Meeting 12/7
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NOvVA: Far Detector Building
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T2K Overview and Status

T2K is a 3" generation
experiment with the Super-
Kamiokande detector (50kton)

New neutrino beamline
from Tokai to Kamioka, 295km
away

Same off axis strategy, peak
neutrino energy at 770MeV

Optimized for v v,

New near detector complex (on
and off axis both)

15 December 2009



Status of N._ ar Detector

| o %y A Both FGDs shipped
l > g et 3 ﬂu' _-:r = 20f 3 TPCs complete

L ! § |
-

"I

4
Loy ‘; 'I._..| ﬁ .__,_, ' o, X i
>y i, P » e n
L - “"‘"‘li'-h-r r 1 " £}
| Wy 10 BN -
L i I - 4 EEe .

1 EM PODule

POD being installed
now :

DSECAL in Japan
40% of rest by
end of the year

INGRID Complete

Field mapping
underway

15 December 2009 Slide courtesy S. Boyd, WIN’09 32
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First Light for T2K

First INGRID neutrino event candidate

* First proton beam sent gll . Now. 22, 2000
the way through beamline 5 wf | ‘
=1 - ‘
—— HE—
3 g % 3 9 5
Top view . . . o
=1 - |
— ";_
[ ';;ﬁld‘iéﬁiﬁiﬁ
neutrino candidate B ron@scmicd
November 22 o
15 December 2009 MR Run #27, Shot #19655

T2K Spill# 241792



Getting to CP-violation and mass
hierarchy

 Long baseline wide band neutrino beames:
— Fermilab to Homestake
— JPARC to Korea
— CERN or FNAL to India Jev |
+ Ingredients left to figure out: GRS
— Which detector(s) to build i I
* Need hundeds of kilotons! ™

— How to take next step in intense conventional
beamlines: is 2MW possible?

— Neutrino Interactions!
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First Light: Argoneut

e Argoneut is a test of the
Liquid Argon TPC detector
concept

2000
1800
1000
1400
1200
1000
0o
w0
400
ano
%0

e “Electronic Bubble
Chamber” | - |

* runningin |
NuMI
Beamline
now
through
late
February

EEEEREREE

&8 28 BE288
.S 888385888

O
858823 RBRE&E 288
o 85 S 8 25 8 8 & 8 ©

40 80

15 December 2009 Ref: M. Soderberg, FNAL All Experimenter’s Meeting 10/26  *°



MicroBooNE

Booster Neutrino Beamline: Energy

spectrum overlaps with T2K

e ]

* MiniBooNE data (stat. error)
-+ expected background (syst. error)

— v, background
— Vg background

IIIIHI[II\IlIHIlIIIIl TTT IIII‘IIIIl\

-

—] —
i —

300 500 700 900 1100 1300 1500 3000
reconstructed E, (MeV)
Excess of low energy events seen

at MiniBooNE:

what are the implications for T2K?

Put scalable Liquid Argon

detector technology in Booster v Beamline !

2 July 2008 D. Harris @ NuFact08

Flax: ja.u)

0TS

0.5

[1Eg)

170 tons Liquid
Argon,
1km baseline

http://www—microboone.fnal.g0\3/6

B.Fleming, Fermilab PAC 3/2008



Long Baseline Neutrino Experiment
@FNAL

e Upgraded Proton Source:
Project X

e New beamline pointing
from Fermilab to
Homestake, SD 1290km

* [nvestigating two
detector options:

— Water
Cerenkov
(a la SuperK)

— Liquid
Argon R
TPC Proof of principle: SRR e, &
50kton Super-Kamiokande Cryostat containing
15 December 2009
100ktons LNG
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What will we want to learn from
Neutrino Factory?

® CP'V|OIat|On StudiES: e Mass Hierarchy and
— Realizing that we may getto a | ici
g that y gettoalow precision ®,;

energy neutrino factory may be best
way to see CP-violation measurement

— Copy MINERVA detector construction — Use “magic Baseline” of
and huge magnetic volumes to begin 7000km where matter
thinking of new neutrino factory effects are largest, CP-

detectors (A. Bross, NuFact’09)

violation is smallest

— (Agarwalla, Choubey,Raychaudhuri
NucI.Phys.B771:1-27€2007)
‘ AR P

L \ ’4

ORI L0 AR 4
B b & 1 |
a 4 . , T P \
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7 \; Ly g
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Conclusions

e The neutrino community is very busy these days
— Precision measurements of oscillations
— Precision interaction measurements
— Keeping Neutrino Factory Designers on their toes...

 Experiments of all different sizes and stages
— Mature experiments getting the most from the data
— New Experiments just coming online right now
— Experiments deep into construction
— Experiments on our wish list, working
their ways through design and approval
 Thank you to Chris for your guidance:
yesterday, today, and tomorrow

15 December 2009




	Minutiæ over Short and Long Distances:  �Neutrino Physics �Today �and �Tomorrow 
	Brief prologue
	Outline
	Neutrino Factories in ‘99
	What did Chris tell us?
	Outline for rest of the talk
	Solar Neutrinos from Super-K 
	Solar Neutrinos à la SNO 
	Precision Measurements of solar Neutrino Sector:  KAMLAND
	Best knowledge of large mass splitting:  MINOS
	Minimal Oscillation Formalism
	Oscillation Formalism (cont’d)
	Three Generation Mixing
	But not all mixing angles are large…
	MINOS Electron Neutrino Appearance Search
	Sterile Neutrinos
	What we know about sterile sector:  MiniBooNE
	What we know about sterile sector:  MINOS
	So what do we know now?
	What don’t we know yet?
	Measuring n Mass Hierarchy
	Current Steps
	What else don’t we know (signal)?
	What don’t we know (background)?
	Just some of the reasons to study �neutrino interactions�(note, no ordering given…)
	MINERnA
	MINERvA’s First (Anti-Neutrino) Light!
	NOvA Overview and Status
	NOvA:  Learning about shipping
	NOvA:  Far Detector Building
	T2K Overview and Status
	Status of Near Detector
	First Light for T2K
	Getting to CP-violation and mass hierarchy
	First Light:  Argoneut
	MicroBooNE
	Long Baseline Neutrino Experiment @FNAL
	What will we want to learn from Neutrino Factory? 
	Conclusions

