
  

Alexandru Macridin

Booster simulations with Synergia



  

Collaborators:

J. Amundson, E. Stern, P. Spentzouris, V. Lebedev 



  

Outline

● Motivation

● Synergia

● Wake fields in laminated magnets

● Simulation results

 Coherent tune shift

 Multi-bunch instability

● Conclusions



  

Combined functions magnets
● 60 % of the machine length 

consists of combined-function 
(dipole & quadrupole) magnets.  

● Parallel-plane geometry (or 
close to it).

● Beam exposed to laminations.

➔ Large wake field

● Non-ultrarelativistic effects are 
important, injection energy 
0.4GeV (=1.42).

● Large space charge effects.

focusing defocusing



  

Coherent tune shift measurement
● Data at injection

● Large decrease of 
the vertical tune

● Small increase of 
the horizontal tune

● Large wake field 

● Chamber geometry 
is important

Evolution of V. 
and H. tune 

monitored over 
time for 

intensities from 2 
to 15 injected 

turns

Daniel McCarron, PhD thesis



  

Horizontal instability near injection 

Y. Alexahin, et al., IPAC-2012

● Stability achieved after the increase of the 

horizontal chromaticity to

(
ωξ x

βc
,
ωξ y

βc
)=2π×(0.091m−1 ,0.023m−1)

● Horizontal instability at injection for  

chromaticity (
ωξ x

βc
,
ωξ y

βc
)=2π×(0.06 m−1,0.025m−1)



  

Synergia

● Single-particle physics  (provided by CHEF)
● linear or nonlinear
● direct symplectic tracking (magnets, cavities, drifts, etc.)
● (and/or) arbitrary-order polynomial maps
● many advanced analysis features

● Apertures (circular, elliptical, polygon, Lamberston, phase space)

● Collective effects (single and multiple bunches)
● space charge (3D, 2.5D, semi-analytic, multiple boundary conditions)
● wake fields (can accommodate arbitrary wake functions)

Accelerator simulation package

URL for download, building instructions and tutorial
https://cdcvs.fnal.gov/redmine/projects/synergia2
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Wake field

βcΔ pz=−qQW ∥
(z)

βcΔ px=−qQ(W X
⊥
(z)X+ W x

⊥
(z) x)

βcΔ p y=−qQ (W Y
⊥
(z)Y +W y

⊥
(z) y)

• q,Q - charge of the source and witness particle
• X,Y - displacements of the source particle
• x,y - displacements of the witness particle
• z - distance between the source and the witness particles

b

Induced  currents

- --- --

source
particle

+Q
Y

witness
particle

+q
y

z

For simulations we need:  W| | (z), W
X

┴(z),W
x

┴(z), W
Y

┴(z), W
y

┴(z)



  

Wake and impedance calculation

W ∥
(z)=

1
2π

∫d ωZ∥
(ω)e

−i
ω z
βc

W x , y
⊥

(z)=
i

2π
∫d ωZx , y(ω)e

−i
ω z
βc

● Solve the Maxwell's equations in the frequency domain for a point 
source moving with speed c.

● The impedance Z() is proportional to the force acting on the witness 
particle.

● The wakes are obtain via Fourier transforms.

A. Macridin, et al., PRST-AB 14, 061003 (2011)
A. Macridin, et al., PRST-AB 16, 121001 (2013)  



  

● The vertical wake ≈ 2 times larger than the 
horizontal wake at small distance (<< 1 
bucket length).

● At larger distance the horizontal wake is 
larger (≈ 2.5 times) than the vertical one.

● The impedance in the laminated 
magnets is much larger (103~104 

times) than in the straight section.
● The horizontal impedance is larger 

than the vertical one at low frequency.

 

Wake and impedance in Fermilab Booster
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
x


y

bare
h tune

bare 
v tune

● Fourier transform of the 
centroid displacement

● Wide spectral features

● Large negative shift of 
the vertical tune

● Small positive shift of 
the horizontal tune

(
ωξ x

βc
,
ωξ y

βc
)=2π×(0.091m−1 ,0.023m−1)4 x 1010 p per bunch 

Coherent tune shift



  

Coherent tune shift
(
ωξ x

βc
,
ωξ y

βc
)=2π×(0.091m−1 ,0.023m−1)

● The simulation shows 
slightly larger tune shift 
than the measurement
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Lattice model
  Orbit Response Measurement fitting (M. McAteer, A. Petrenko)

● dipole and quadrupole correctors to ensure agreement with the 
measured lattice functions

● note 
x
 >> 

y



  

ωξ x

β c
=2π×0.009 m−1

ωξ x

β c
=2π×0.12m−1

ωξ x

β c
=2π×0.091m−1

ωξ x

β c
=2π×0.023 m−1

red

blue

green

magenta

● Beam loss increases with 
increasing chromaticity due to 
the increase in the transverse 
size 

● Small chromaticities,                    
are  favorable when the bunches 
do not interact 

ωξ x

β c
≤ ≈2π×0.023 m−1

5 x 1010 p per bunch 

Single bunch simulation



  

84 bunch simulation, horizontal instability

ωξ x

β c
=2π×0.023m−1

red

ωξ x

β c
=2π×0.091m−1

black

ωξ x

β c
=2π×0.069m−1

green

ωξ x

β c
=2π×0.046m−1

blue

experiment, Y. Alexahin, et al. IPAC 2012

(
ωξ x

βc
,
ωξ y

βc
)=2π×(0.06 m−1 ,0.025m−1

)

Large horizontal 
chromaticity 
(similar value to 
that observed in 
the experiment) 
needed to 
stabilize the 
beam



  

 bunch 13th

 bunch 12th 
 bunch 9th

 bunch 4th 
 bunch 0th 

the 0th bunch leads 

● Horizontal instability 

● The instability is 
caused by short 
range bunch-bunch 
interaction rather 
than by a coupling to 
a resonant element5 x 1010 p per bunch 

14-bunch train simulation



  

● direct space-charge neglected
● red - original wake, 1 x W

X
, 1 x W

Y
 

● blue - increased horizontal wake, 1.5 x W
X
, 1 x W

Y 

● green - increased vertical wake, 1 x W
X
, 2 x W

Y
 

βc Δ px=−qQ(W X
⊥
(z)X+W x

⊥
(z)x)

βc Δ p y=−qQ (W Y
⊥
(z)Y +W y

⊥
(z) y)

responsible for the instability 

The instability is caused by the dipole horizontal wake 

Simulations with modified wakes



  

τ−1 ∝∫dsβ(s)∫ dzW⊥(s−z )

 - instability growth rate

〈βx 〉F=27.758

〈βx 〉D=12.784

〈βy 〉F=8.15

〈βy 〉D=16.78

The  lattice beta function is largest  at  the F magnets location 
in the horizontal plane

● The dipole horizontal wake at the 
location of the F magnets is 
enough to cause instability.

Simulations with modified wakes



  

● only the dipole horizontal wake at the F magnets is turned on
● instability is seen for wakes longer than 2 bucket length  

At the relevant distance for the instability the horizontal wake 
is larger than the vertical wake 

1 bucket length=5.654 m

Simulation with short wakes



  

● The presence of the laminations yields large and non-conventional 
wake fields in the Fermilab Booster.

● We ran single and multi-bunch Synergia simulations with realistic 
lattice model, space charge and wake fields.

● The simulation of the coherent tune shift and transverse instabilities 
are in good agreement with measurements.

● The instability is caused by short range ( [2,5] bucket length ) 
bunch-bunch interaction via  dipole horizontal wake. 

● The reason for the horizontal instability is twofold:

● large horizontal lattice beta function at F magnets locations.

● larger horizontal wake field at the relevant interaction range.

Conclusions



  

 emitx= 4.54482918192e-06  meters*GeV/c   = 4.7626595642e-06  meters*rad (synergia units)= 1.51600162381e-06  
pi*meters*rad
 emity= 1.87488822392e-06  meters*GeV/c   = 1.96475026322e-06  meters*rad (synergia units)= 6.25399432664e-07  
pi*meters*rad
emitz= 0.000325560118091  meters*GeV/c = 0.00108595166224  eV*s = 0.000232142587981  meters*GeV = 
0.000478453292186  [cdt*dp/p] (synergia units)

*    95%emitx= 8.9639356764e-05   meters*rad = 2.85330934491e-05  pi*meters*rad
*    95%emity= 3.69791179534e-05  meters*rad = 1.17708188269e-05  pi*meters*rad
*    95%emitz= 0.0204390020255  eV*s
*    Normalized emitx= 4.8438289074e-06  meters*rad = 1.54183862821e-06  pi*meters*rad
*    Normalized emity= 1.99823522813e-06  meters*rad = 6.36058028036e-07  pi*meters*rad
*    Normalized 95%emitx= 9.11670678286e-05   meters*rad = 2.90193789842e-05  pi*meters*rad
*    Normalized 95%emity= 3.76093479071e-05  meters*rad = 1.19714272518e-05  pi*meters*rad

*    xrms= 0.005  meters
*    yrms= 0.006  meters
*    zrms= 0.4  meters= 1.87118041835  ns
*    pxrms= 0.000913323118096  GeV/c,    dpx/p= 0.000957098035919
*    pyrms= 0.000312583086879  GeV/c,    dpy/p= 0.000327564968614
*    prms= 0.000819420101319  GeV/c,    dp/p= 0.000858694315327
*    Erms= 0.000584292400675  GeV,  deoe= 0.000436602116443
*    pz= 0.954262869444   GeV/c

*    total energy= 1.33827203 GeV,   kinetic energy= 0.4 GeV
*    L=474.203 m
*    Tunes (x,y,z): 6.6265, 6.788, 0.0735
*    w_0=2.832 MhZ
*    head-tali phase =0.01325[m^-1] *chrom/slippage * z [m]
*    slip factor=-0.44
*    voltage per RF V=0.6/18.0,  "RF cavity voltage in MV”



  

84 bunch simulation, horizontal instability

(
ωξ x

βc
,
ωξ y

βc
)=2π×(0.023 m−1 ,0.023m−1

)

experiment, Y. Alexahin, et al. IPAC 2012

(
ωξ x

βc
,
ωξ y

βc
)=2π×(0.06 m−1,0.025m−1

)

5 x 1010 p per bunch 

simulation

strong horizontal instability

84 bunch simulation, horizontal instability



  

84 bunch simulation, the 14th bunch

ωξ x

β c
=2π×0.023m−1

red

ωξ x

β c
=2π×0.091m−1

black

ωξ x

β c
=2π×0.069m−1

green

ωξ x

β c
=2π×0.046m−1

blue

ωξ y

β c
=2π×0.023m−1

● Large horizontal 
chromaticity (similar 
value to that 
observed in the 
experiment) needed 
to stabilize the beam

5 x 1010 p per bunch 

Horizontal instability
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