

Higgs couplings @ TLEP

Michail Bachtis
CERN/PH

Introduction

- Built a model independent combined fit to estimate the uncertainty on the Higgs couplings for different TLEP measurements and scenarios
- The fit is based on what was performed for ILC by M.Peskin[1]
 - Challenged the LEP3 numbers in 3^d TLEP workshop produced in assumption of no exotic decays
- Those are (technically) very simple fits compared to what is done @ the LHC
 - Where all correlations and contaminations are taken into account
 - To do this @TLEP we need to redo all analyses and give as inputs shapes and yields instead of plain numbers
 - This will be done at some point but:
- We are (and were) always doing apples to apples comparison between TLEP and ILC

Fit Procedure

- For each coupling H → XX assume a deviation d_√ on the value $g_x/g_{x(SM)}$ from unity
- Each inclusive cross section measurement $\sigma(X \to H)$ has a deviation from unity equal to: $(1+d_X)^2$
- Each σ(X → H) x BR(H → YY) has a deviation equal to:

$$\frac{(1+d_X)^2(1+d_Y)^2}{D\Gamma}$$

• where $D\Gamma = \frac{\sum_X BR(H \to XX)(1+d_X)^2}{1-d_{ero}^2}$

d_{exp}² is the BR to exotic decays

Assumptions in the fit

- Treatment of invisible vs exotic decays
 - Invisible decays can be measured very precisely @ TLEP (~0.2%) and constrain the total width
 - We do not use the BR → invisible measurements in the fit but assume we do not know the non SM (exotic) decays
 - Essentially measuring total width in the fit
- Assumptions for g_w,g₇ <SM values
 - Coming from the constraints on W,Z masses and assumptions on CP and presence of double charged Higgs
 - We do not use this assumptions in the fit

Constrain terms in the PDF

- Each measurement becomes a term in the total pdf product to be maximized
 - Using Gaussians to model the constraints
- For each inclusive cross section measurement $\sigma(X \to H)$ with uncertainty σ , a term is added in the product of the form: $[1-(1+d_X)^2]^2$

• For each $\sigma(X \to H) \times BR(H \to YY)$ with uncertainty σ , a term is added in the product of the form

$$e^{\frac{[1-\frac{(1+d_X)^2(1+d_Y)^2}{D\Gamma}]^2}{2\sigma^2}}$$

Higgs measurements at 250 GeV

	ILC-250(TDR)	TLEP 240
σ _{HZ}	2.5%	0.4%
$\sigma_{_{HZ}} x BR(H \rightarrow bb)$	1.1%	0.2%
$\sigma_{_{HZ}} \times BR(H \to cc)$	7.4%	1.2%
$\sigma_{_{HZ}} x BR(H \rightarrow gg)$	9.1%	1.4%
$\sigma_{_{HZ}} x \; BR(H \to WW)$	6.4%	0.9%
$\sigma_{_{HZ}} x BR(H \rightarrow \tau \tau)$	4.2%	0.7%
$\sigma_{_{HZ}} x \; BR(H \to ZZ)$	19%	3.1%
$\sigma_{_{HZ}} \times BR(H \rightarrow \gamma \gamma)$	35%	3.0%
$\sigma_{_{HZ}} x \; BR(H \to \mu \mu)$	100%	13%
$\Gamma_{\rm in}/\Gamma_{\rm H}$	<1%	<0.2%
m _H	40 MeV	8 MeV

Inclusive σ_{ZH} measurement from missing mass in $Z \to II$

- Using the most up to date TLEP analyses/numbers
 - CMS full simulation
 - Except H → gg/cc (extrapolated from ILC)

Higgs measurements at 350 GeV

- Probing Higgs via WW fusion
 - Separating WWH → bbvv from ZH → vv bb by the missing mass
 - Possible at 250 and 350 GeV
- Measurement of the total width constrained in the fit

$$\begin{split} \sigma(ZH) \approx g_Z^2 \\ \sigma(ZH) \cdot BR(H \to ZZ) \approx \frac{g_Z^2 g_Z^2}{\Gamma_T} \\ \sigma(ZH) \cdot BR(H \to WW) \approx \frac{g_Z^2 g_W^2}{\Gamma_T} \\ \sigma(ZH) \cdot BR(H \to bb) \approx \frac{g_Z^2 g_b^2}{\Gamma_T} \\ \sigma(\nu\nu H) \cdot BR(H \to bb) \approx \frac{g_W^2 g_b^2}{\Gamma_T} \end{split}$$

@TLEP only WWH is improved at 350 GeV @ILC all measurements improve due to Lumi increasing with energy

	ILC	TLEP
$WW \rightarrow H \rightarrow bb@240$	11%	2%
$WW \rightarrow H \rightarrow bb@350$	1%	0.4%

Validation and results

- Started by reproducing the fit by M.Peskin[1]
 - In the beginning diffference due to ILC using HL-LHC inputs
 - After adding HL-LHC inputs got identical results
- Then reproduced all numbers in ILC TDR
- Then run TLEP with latest inputs
- Results:
 - 5-10 times better precision in TLEP wrt ILC up to 350

<u> </u>									
	g_z	g _w	g _b	g _c	9 _g	9 _T	g_{μ}	g _y	BR _{exo}
TLEP-240	0.16%	0.85%	0.88%	1.0%	1.1%	0.94%	6.4%	1.7%	<0.48%
TLEP-350	0.15%	0.19%	0.42%	0.71%	0.80%	0.54%	6.2%	1.5%	<0.45%
ILC 350	0.9%	0.5%	2.4%	3.8%	4.4%	2.9%	45%	14.5%	<2.9%

Results@ 250 + 350 GeV

- Only TLEP achieves sub-percent precision in all couplings
- Theoretical systematics can be trivially introduced to the fit when available

Probing the total width in the fit

- Currently the width results are produced analytically by comparing WWH vs WW and ZH vs ZZ
 - We can take them directly from the fit
 - By sampling the covariance matrix and throwing toys for DΓ
- Result identical to analytical calculation
- @ $\sqrt{s} = 250 + 350$:
 - 0.9% for TLEP
 - 5.8% for ILC

Comparison with HL-LHC

- Fit with LHC like assumptions
 - No exotic decays
 - $g_w, g_z \le SM$ values

- LHC results with only CMS
 - Scenario I — —
 - Scenario II
- HL-LHC Assumptions
 - Theory systematics improve by x2
 - Experimental systematics scale with statistics
 - Identical analysis performance as today
- HL-LHC numbers will improve by √2 for ATLAS+CMS and by including new channels (e.g. in ttH)

Conclusions and Plans

- Implemented a fit to perform estimation of the TLEP couplings based on input measurements
- Fit exhaustively validated in ILC inputs
- TLEP can provide ultimate precision in all fermion and vector boson couplings
- Theoretical systematics can be trivially implemented
- Also some evident correlations can be taken into account
 - I.e H \rightarrow bb vs H \rightarrow cc and H \rightarrow gg
- Code to become available

Backup

TLEP luminosity

- Much higher repetition rate + multiple interaction points
 - Significantly larger luminosity at ttbar threshold
- RF power is used at lower √s to collide more bunches
- Crossing point with LC at ~ 400 GeV
 Note: Luminosity upgrade scenario envisioned @ ILC and TLEP

Towards the energy frontier

- Higgs measurements at higher energy can probe
 - The top coupling (ttH production)
 - The self coupling (HHH)

 ILC proposes upgrade to 1 TeV (CLIC can run at 3 TeV)

- HL-LHC will measure the top coupling by the time the next e+e- collider is foreseen
- Measurement of HHH is difficult
 - Neither HL-LHC, nor ILC can reach a meaningful precision
 - TLEP natural upgrade is VHE-LHC
 - Towards a meaningful measurement of the HHH coupling (<10%) and direct searches for new physics
 - CLIC can also measure HHH
 @ 3 TeV