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PROLOGUE 2

Thanks to the LHC for 
impressive performance!

LHC era in a nutshell:
More energy

More luminosity

CMS & ATLAS:
A very broad and significant 

physics program

SEE SAL’S TALK FOR MORE DETAILS!
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&
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the DM connection,
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A RELATIVELY NEW SUBFIELD  
(FIRST PHENO PAPERS ~2008) 

VERY SUCCESSFULLY IMPLEMENTED IN CMS AND ATLAS, MANY PERFORMANCE 
PAPERS, AND BROAD RANGE OF ANALYSES, O(50)


QCD MEASUREMENTS + SEARCHES (SUSY, EXOTICS,…)

N.T. FIRST CMS CONVENER OF  
JET SUBSTRUCTURE GROUP  



JET SUBSTRUCTURE EXAMPLES 10

pruned jet mass
0 50 100 150

a
rb

itr
a

ry
 u

n
its

0

0.1

0.2

SM Higgs, m = 600 GeV

   ungroomed jet mass

W+Jets, MadGraph+Pythia6

   ungroomed jet mass

CMS Simulation

W jet

quark jet how prong-y are these jets? (a)

−0.2 0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

2

2.2
Boosted W Jet, R = 0.6

η

φ

(b)

(c)

−1.2 −1 −0.8 −0.6 −0.4 −0.2

4.6

4.8

5

5.2

5.4

5.6

5.8
Boosted QCD Jet, R = 0.6

η

φ

(d)

Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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subjets. The open square indicates the total jet direction and the open circles indicate the two
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with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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example: N-subjettiness

jet (groomed) mass:  
a very powerful discriminator 



MORE LUMINOSITY = PILEUP 11

PILEUP IS THE GREATEST EXPERIMENTAL CHALLENGE GOING FORWARD,  
IT AFFECTS EVERYTHING. 

• detector design, object performance and physics sensitivity 
radiation damage to detectors, degrades energy/position measurements, lost untriggered events forever 

2016: <PU> ~ 20-50 
2017 + Run 3: <PU> ~ 50-80 

HL-LHC: 140-200

Multiple pp collisions in the same beam crossing 
To increase data rate, squeeze beams as much as possible
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PILEUP IS THE GREATEST EXPERIMENTAL CHALLENGE GOING FORWARD,  
IT AFFECTS EVERYTHING. 

• detector design, object performance and physics sensitivity 
radiation damage to detectors, degrades energy/position measurements, lost untriggered events forever 

2016: <PU> ~ 20-50 
2017 + Run 3: <PU> ~ 50-80 

HL-LHC: 140-200

Multiple pp collisions in the same beam crossing 
To increase data rate, squeeze beams as much as possible

Jet substructure techniques rely on pulling apart the jet and 
characterizing QCD radiation. 

Mitigating pileup uses the same ideas over the entire event!



PILEUP PER PARTICLE ID 12Bertolini, Harris, Low, NT, arXiv:1407.6013
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A general framework, that assigns on a per 
particle basis a weight for how likely a particle 
is to be from pileup 

key insight: using the QCD ansatz (e.g. radiation 
profile) to infer neutral particles as pileup

collinear QCD radiation

vertexing information

asymptotic behavior

precision timing}
PUPPI DEMONSTRATES LARGE GAINS, EVEN FOR CURRENT 2016 DATASET


Bertolini, Harris, Low, NT, arXiv:1407.6013
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PUPPI!

Puppi integrated into current and future CMS plans 
Many spring conference analyses with PUPPI


Part of 2017 full commissioning pipeline

HL-LHC design studies using PUPPI for performance studies
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Tools for more energy 
and luminosity

A retro search for hidden physics
&

mission impossible

the DM connection,
coming full circle
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2 Robert M. Harris and Konstantinos Kousouris

q or g

q or g q or g

q or g

X

Fig. 1. Diagram of dijet resonance in the s− channel. The initial state and final states contain
two partons (quarks, anti-quarks or gluons) and the intermediate state contains a resonance X.

modeled the resonance shapes as a function of the dijet mass. In section 3.2 we
review the data of each experiment and how each experiment modeled the QCD
background. In section 3.3 we review the limits on dijet resonance masses published
by each experiment, discussing the experimental uncertainties, statistical proce-
dures, and the cross section assumed for each model. In section 4 we conclude with
a few observations. Also, in Appendix A, we include details of the cross-section cal-
culations for axigluons and excited quarks by ATLAS and CMS, which are necessary
to understand the mass limits on these models from the two experiments.

2. Theory

In this section we present the fundamental ingredients of the theory, which are
necessary for the better understanding of the experimental searches presented in this
review. In Section 2.1 we describe some basic features of Quantum Chromodynamics
(QCD), and in Section 2.2 we present the theoretical models that predict partonic
resonances and are quoted in the experimental searches. It should be noted, that
the purpose of this section is not to give all the details of the models presented, but
rather an overview of their features.

2.1. Elements of QCD

2.1.1. The QCD Lagrangian

Quantum Chromodynamics is the gauge field theory of the strong interaction be-
tween particles that carry the color degree of freedom. The underlying symmetry
group is the SU(3)C , which makes QCD a non-Abelian theory. The profound im-
plication of this property of QCD is that the gauge mediators (gluons) are colored
and thus self interacting. The QCD Lagrangian is written as:

LQCD =
∑

i

q̄i,a
(

iγµ∂µδab − gsγ
µtCabG

C
µ −miδab

)

qi,b −
1

4
FA
µνF

µν,A, (1)

where qi,a represents the quark spinor of flavor i and color a = 1 → 3, GA
µν is the

gluon field associated with the generator tAab (A = 1 → 8), gs is the gauge coupling,
and FA

µν is the gluon field tensor:

FA
µν = ∂µG

A
µ − ∂νG

A
ν − gsfABCG

B
µG

C
ν . (2)

ACCESSES A RICH AND BROAD RANGE OF NEW PHYSICS MODELS…

Extra dimensional models, composite Higgs, extended Higgs sectors.
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Figure 3: Observed 95% CL upper limits on sBA for a narrow resonance decaying to gluon-
gluon final states (open circles), quark-gluon final states (solid circles), and quark-quark final
states (open triangles) compared with theoretical predictions for various resonance models.
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Figure 4: Observed 95% CL upper limits on the coupling gB of a hypothetical leptophobic
resonance Z0

B ! qq [21] as a function of its mass. The results from this study are compared to
results obtained with similar searches at different collider energies [14, 21].

A CLASSIC PROGRAM AT HADRON COLLIDERS
H
EP-EX/1604.08907
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HOW TO ACCESS 
THIS REGIME? 

NEW PHYSICS 
HIDING?
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An, Huo, Wang, hep-ph/1212.2221  

Shimin, Whiteson, hep-ph/1602.07727

Z ′
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q̄
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q̄

q

1

use a very hard ISR jet to get 
you above trigger thresholds!

single jet 
substructure signal
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An, Huo, Wang, hep-ph/1212.2221  

Shimin, Whiteson, hep-ph/1602.07727

Z’

q

q

q/g

KINEMATIC SELECTIONS: 

PUPPI JET 
HIGH ENERGY (PT > 500 GEV)


TRIGGER: 
HIGH ENERGY EVENT

(ΣPT > 800)

SUBSTRUCTURE SELECTIONS: 
JET MASS


“2-PRONG SELECTION”: Τ21DDT

[PUPPI’ED INPUTS] 

BKG: QCD  
SM CANDLES: W/Z + JETS

SIGNAL

Z’ or 

BACKGROUND

🔥
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KINEMATIC SELECTIONS: 

PUPPI JET 
HIGH ENERGY (PT > 500 GEV)


TRIGGER: 
HIGH ENERGY EVENT

(ΣPT > 800)

SUBSTRUCTURE SELECTIONS: 
JET MASS


“2-PRONG SELECTION”: Τ21DDT

[PUPPI’ED INPUTS] 

BKG: QCD  
SM CANDLES: W/Z + JETS

SIGNAL

Z’ or 

BACKGROUND

REQUIRES SOME NEXT LEVEL  

JET SUBSTRUCTURE METHODS

🔥
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search is performed in 
windows of mass for each  

pT category



LIGHT DIJET RESONANCES 20🔥 SEE CRISTINA SUAREZ’S NP TALK!

SM 
W/Z→qq

Predict QCD 
jet mass bkg 

at sub-% 
level!

search is performed in 
windows of mass for each  

pT category
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LIGHT DIJET RESONANCES 21🔥 SEE CRISTINA SUAREZ’S NP TALK!

Covers comparable dynamic range to traditional dijet searches!



LIGHT DIJET RESONANCES 21🔥 SEE CRISTINA SUAREZ’S NP TALK!

Push to lower couplings using b-tagging information… 
where relevant? how about at 125 GeV? 😉
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MAD PROPS: JAVIER DUARTE, CATERINA VERNIERI 

SEE CATERINA’S W&C ON JUNE 30 FOR MORE!🔥🔥
Back story:  

Gluon fusion Higgs to bb has long been 
considered impossible at the LHC


Overwhelming QCD backgrounds, hard to

trigger on


…but let’s use our new tools!

HIG-17-010
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MAD PROPS: JAVIER DUARTE, CATERINA VERNIERI 

SEE CATERINA’S W&C ON JUNE 30 FOR MORE!🔥🔥
Back story:  

Gluon fusion Higgs to bb has long been 
considered impossible at the LHC


Overwhelming QCD backgrounds, hard to

trigger on


…but let’s use our new tools! h(125)

b

b

q/g

specially-trained ML techniques 
for double-b tagging in a single jet


Not just a daunting challenge,

chance to probe unexplored new physics 

contributions to the Higgs at very high pT

HIG-17-010

n.b. this is a very hard SM Higgs calculation at very high pT!
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MAD PROPS: JAVIER DUARTE, CATERINA VERNIERI 

SEE CATERINA’S W&C ON JUNE 30 FOR MORE!🔥🔥
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Clear Z(bb) observation, standard candle 
5.1σ observed (5.8σ expected)


Higgs measurement, proof-of-principle 
1.5σ observed (0.7σ expected)


SM Higgs signal strength, μH = 2.32+1.80-1.57
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Tools for more energy 
and luminosity

A retro search for hidden physics
&

mission impossible

the DM connection,
coming full circle

(a popular diagram)
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IN THERMAL EQUILIBRIUM 
IN THE EARLY UNIVERSE



DARK MATTER COMPLEMENTARITY 25

IN THERMAL EQUILIBRIUM 
IN THE EARLY UNIVERSE

MONO-JET important when

mZ’ > 2 × mχ



DARK MATTER COMPLEMENTARITY 25

IN THERMAL EQUILIBRIUM 
IN THE EARLY UNIVERSE

MONO-JET important when

mZ’ > 2 × mχ

DIJETS dominant when

mZ’ < 2 × mχ
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Contents

1 Vector and Axial-vector Mediators 1

2 Scalar and Pseudoscalar Mediators 7

3 Limits translated into the Direct Detection planes 9

1 Vector and Axial-vector Mediators
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Figure 1. 95% CL observed and expected exclusion regions in Mmed�mDM plane for di-jet searches
and di↵erent /E

T

based DM searches from CMS in the lepto-phobic Axial-vector model. Following the
recommendation of the LHC DM working group [1, 2], the exclusions are computed for a universal
quark coupling g

q

= 0.25 and for a DM coupling of gDM = 1.0. It should also be noted that the
absolute exclusion of the di↵erent searches as well as their relative importance, will strongly depend
on the chosen coupling and model scenario. Therefore, the exclusion regions, relic density contours,
and unitarity curve shown in this plot are not applicable to other choices of coupling values or model.
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THERMAL RELIC DARK MATTER

DIRECT DETECTION

COLLIDER

LHC: DIJETS, 
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THERMAL ORIGIN OF DARK MATTER 
REMAINS THE SIMPLEST EXPLANATION 

LIGHT DARK MATTER IS EQUALLY 
INTERESTING, BUT OUT OF THE REACH 

OF CONVENTIONAL DARK MATTER 
SEARCHES
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AXIONS STERILE  
NEUTRINOS

THERMAL RELIC DARK MATTER

DIRECT DETECTION

COLLIDER

LHC: DIJETS, 
MONOJETS, ETC.

B-

FACTORIES

mχ

THERMAL ORIGIN OF DARK MATTER 
REMAINS THE SIMPLEST EXPLANATION 

LIGHT DARK MATTER IS EQUALLY 
INTERESTING, BUT OUT OF THE REACH 

OF CONVENTIONAL DARK MATTER 
SEARCHES

WHAT ABOUT THIS 
REGION?

LIGHT DARK MATTER IS EQUALLY 
INTERESTING, BUT OUT OF THE REACH OF 
CONVENTIONAL DARK MATTER SEARCHES

NORMAL MATTER LIVES HERE, 
WHY NOT DARK MATTER?
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AXIONS STERILE  
NEUTRINOS

THERMAL RELIC DARK MATTER

DIRECT DETECTION

COLLIDER

LHC: DIJETS, 
MONOJETS, ETC.

B-

FACTORIES

mχ

MANY NEW IDEAS FOR THIS REGION 

DIRECT DETECTION: 
reduced nuclear recoil thresholds 

electron recoils (semiconductors and 
superconductors) 

ACCELERATORS: 
colliders 

proton/electron fixed target 
proton/electron beam dumps 

SEE HERE FOR WAY MORE DETAILS

https://indico.fnal.gov/conferenceDisplay.py?confId=13702
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Thermal Relic Targets & Current Constraints

Accelerator experiments are uniquely positioned 
to test thermal targets because high q2 makes 
them insensitive to DM spin & mass matrix

102–103

accelerator targets
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mA = 2mχ

mχ

mA’

visible dark photon searches

missing momentum/mass/energy  
& DM scattering searches

miniBoone, NA64, 

(proposed) LDMX, BDX, SBN, DarkLight,


        PADME, SHiP, …

HPS, LHCb, APEX

(proposed) SeaQuest, 

                   MAGIX,…

experiment types:

proton / electron 

beam dumps / fixed target 
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Tools for more energy 
and luminosity

A retro search for hidden physics
&

mission impossible

the DM connection,
coming full circle

JET SUBSTRUCTURE

PUPPI

LIGHT DIJETS

GG➙H➙BB

LDMX


