
Introduction:Project X, Neutrino factory and Muon Collider Requirements

Keith Gollwitzer Accelerator Division Fermilab

Fermilab Long Range Plan

- Project X will be the Intensity Frontier
- Neutrino Factory will push the Intensity Frontier farther by upgrading Project X
- Muon Collider, with an upgraded Project X, will become the Energy Frontier

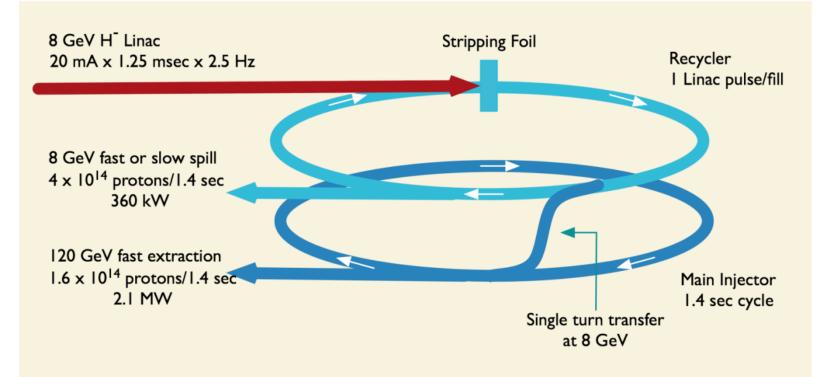
Outline

- Project X design criteria
- Project X evolution & choices
- Neutrino Factory (NF) and Muon Collider (MC) requirements
- Simple match (on paper) Project X to NF/MC
- Implications of NF/MC requirements on connection to Project X
- Possible Project X upgrades

Project X Design Criteria

- 1. A neutrino beam for long baseline neutrino oscillation experiments
 - 2MW proton beam with energy between 60-120GeV

Project X Design Criteria (1)


- Neutrino program with beam from Main Injector
 - Desiring 2MW means the following

Final Beam Energy (GeV)	MI Cycle Time (s)	Particles per MI Cycle (TP)	8 GeV Beam Power (KW)
60	0.6	125	267
120	1.33	139	133

- Design Project X to deliver ~500KW so as to support other 8GeV experiments
- Use Recycler as an 8 GeV accumulation ring

Project X Evolution (1)

- Initial Configuration
 - Pulsed 8GeV Linac aligned with ILC technologies
 - Suited for meeting neutrino requirement

Project X Design Criteria

- 1. A neutrino beam for long baseline neutrino oscillation experiments
 - 2MW proton beam with energy between 60-120GeV
- 2. Kaon-and muon-based precision experiments running simultaneously with the neutrino program

Project X Design Criteria (2)

• Non-neutrino experiments' desires

	Proton Energy (kinetic)	Beam Power	Beam Timing
Rare Muon decays	2-3 GeV	>500 kW	1 kHz – 160 MHz
(g-2) measurement	8 GeV	20-50 kW	30- 100 Hz.
Rare Kaon decays	2.6 – 4 GeV	>500 kW	20 – 160 MHz. (<50 psec pings)
Precision K ⁰ studies	2.6 – 3 GeV	> 100 mA (internal target)	20 – 160 MHz. (<50 psec pings)
Neutron and exotic nuclei EDMs	1.5-2.5 GeV	>500 kW	> 100 Hz

Project X Evolution (2)

- Second configuration
 - CW 3 GeV 1mA H⁻ Linac
 - Above Kaon production threshold
 - Produces low energy pions
 - Allows nuclear physics experiments
 - Low energy chopping allow supporting different experiment needs
 - Splitter/switchyard to simultaneously support the experiments

Muons

Kaons

Main Injector 60-120 GeV

Project X Evolution (3)

- Second configuration
 - 3-8 GeV machine to fill RR/MI
 - 10Hz RCS (accumulation and acceleration)
 - Pulsed Linac (accumulation in Recycler)
 - Satisfies neutrino 2MW program
 - Additional 8GeV beam power available for other 8GeV experiments

H- Source

3 GeV

CW Linac

MW

Nuclear

Kaons

Main Injector

60-120 GeV

Muons

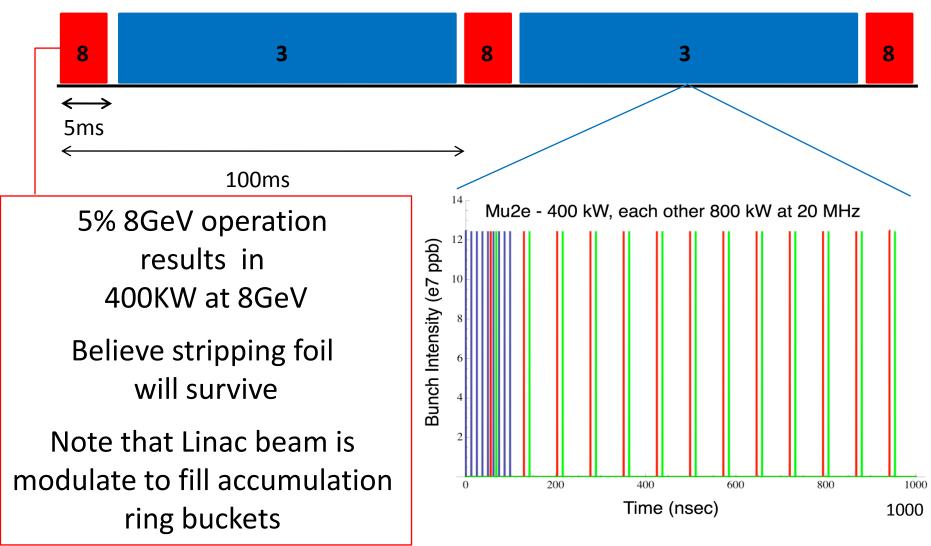
Project X: Evolving 3GeV Linac

S	SR0 SSR	1 SSR2	β=0.6 β=0.9	ILC
	325 M 2.5-160		650 MHz 0.16-2 GeV	1.3 GHz 2- 3 GeV
Section	Freq	Energy (MeV)) Cav/mag/CM	Туре
SSR0 (β _G =0	.11) 325	2.5-10	26 /26/1	SSR, solenoid
SSR1 (β_G =0	.22) 325	10-32	18 /18/ 2	SSR, solenoid
SSR2 (β _G =0	.4) 325	32-160	44 /24/ 4	SSR, solenoid
LB 650 (β _G	=0.61) 650	160-520	42 /21/ 7	5-cell elliptical, doublet
HB 650 (β _G	=0.9) 650	520-2000	96 /12/12	5-cell elliptical, doublet
ILC 1.3 (β _G =	=1.0) 1300	2000-3000	64 / 8/ 8	9-cell elliptical, quad

Project X: 8GeV Numbers

• 1mA CW Linac to feed RCS or pulsed Linac

Final Beam Energy (GeV)	MI Cycle Time (s)	Particles per MI Cycle (TP)	8 GeV Beam Power (KW)	Accumulation Duty factor (%)
60	0.6	125	267	3.33
120	1.33	139	133	1.67


- Design a system to deliver 300-400KW to satisfy neutrino program and any other 8GeV experiments
 - Accumulation duty factor of 3.75% to 5%

Project X to Neutrino Factory & Muon Collider - Keith Gollwitzer

Accumulation/Stripping Duty Factor

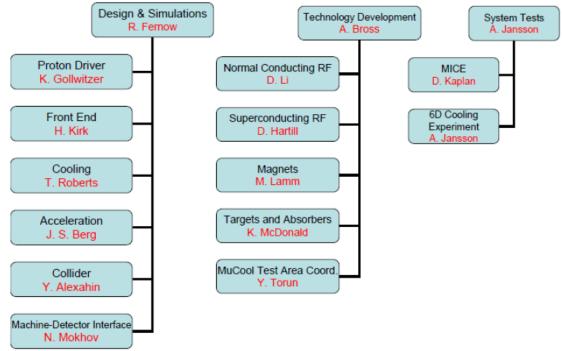
- 400KW at 8GeV requires 50ms of accumulation/s
- Conventional Charge Exchange
 - Short Linac bursts so as to not overheat foil
 - Up to 5ms
 - While not injecting, accumulated beam is moved out of foil
 - Cooling rate of foil determines time between bursts
 - At least 10ms between bursts
- Laser
 - Burst length will be determined by laser capability

Simplified Project X Operation

Project X: 3GeV Numbers

- Previously discussed numbers
 - 1mA beam current
 - 5% destined to 3-8GeV accelerator
- 3GeV program has access >2800KW
 - Assume finite time to switch 3GeV Linac output between switchyard and second accelerator
 - Previous slide showed example of 2MW program in 3GeV switchyard

RCS or Pulsed Linac

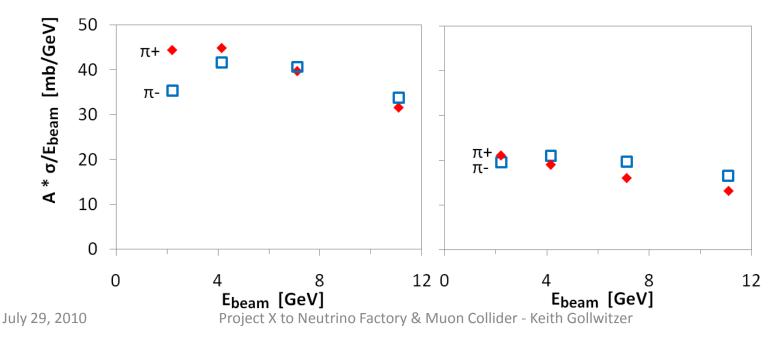

- Both support needs for Project X era
- Both have nearly the same cost
- Accumulation
 - Stripping inefficiency not much different between
 3GeV in RCS and 8GeV in Recycler
 - Beam energy difference means larger beam power loss with pulsed Linac

Project X Design Criteria

- 1. A neutrino beam for long baseline neutrino oscillation experiments
 - 2MW proton beam with energy between 60-120GeV
- 2. Kaon-and muon-based precision experiments running simultaneously with the neutrino program
- 3. A path toward a muon source for a possible future neutrino factory, and, potentially, a muon collider at the Energy frontier

Muon Accelerator Program

- An interim organization is in place
 - Upcoming DOE review of 5yr proposal
 - Proton Driver task is to "consider additional effort needed to determine modifications to Project X"



Project X to Neutrino Factory & Muon Collider - Keith Gollwitzer

10²¹ muons/year for Neutrino Factory and Muon Collider

- 4MW proton beam onto target
- Proton energy 5-15GeV
 - Most captured muons/W is ~8GeV

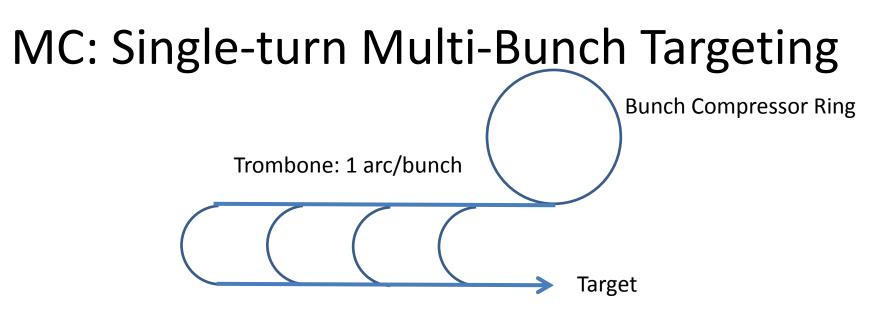
HARP (p + Pb -> π^{+-} X) HARP-CDP (p + Ta -> π^{+-} X)

10²¹ muons/year for NF/MC (continued)

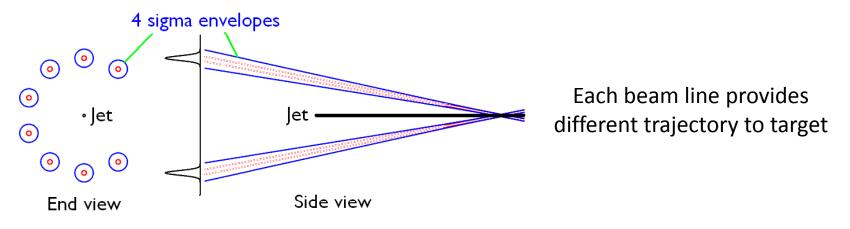
- Bunch Structure
 - 1-3ns rms bunch length
 - Neutrino factory
 - 3 bunch train in 320microseconds at 50-75Hz
 - Muon Collider
 - "Single" bunch at 15Hz
- Target
 - Liquid Hg-jet
 - 1cm transverse size
 - Proton beam to interact with 60cm at angle of 33mrad

RCS or Pulsed Linac (part 2)

- Support of future NF/MC complex?
 - 8GeV from 400KW to 4MW
 - 1.1x10¹⁹ proton/hr
 - If stay with 1mA CW Linac, require accumulation duty factor of 50%
 - Can stripping be done with foil or laser?
 - Need to increase rate of 3-8GeV machine.
 - RCS does not look favorable
 - » Need to spend 50% accumulating
 - » Need to increase repetition rate
 - Pulsed Linac becomes CW


A Basic Concept for 8GeV

- Proton Accumulation Ring
- 4MW 8GeV Considerations **Proton Source** Target **Bunch** • Space Charge Stripping Decay Cool Bunch Compressor Ring Accumulation & Compression Considerations Forming 1-3ns bunches NF: keeping short bunch **Proton Source Muon Source** length for many turns before 2nd and 3rd bunch extractions
 - MC: One bunch or delivery of several bunches at once to target


8GeV Ring Numbers

- 4MW at 8GeV
- Bunch in Proton Accumulation Ring
- Narrow bunches to 1-3ns in Bunch Compressor Ring

Facility	Cycle Frequency (Hz)	Bunches	Particles per Bunch (Tp)	Time between Bunch Extractions (μs)
NF	50	3	21	160
NF	75	3	14	160
MC	15	1	210	-
MC	15	8	26	Single Turn

Muon Collider Proton Driver Trombone Schematic (not to scale; bunches arrive simultaneously on target)

Constraints due to Targetry (1)

- Transverse
 - Would like spot size smaller than target
 - σ_r = 0.25cm
 - Take β^* to be target length: 60cm
 - $\varepsilon_{95\%} = 62.5\pi$ mm-mrad
- Longitudinal
 - Bunch length of 1-3ns affects
 - Peak current
 - RF voltage
 - Assume 1% momentum spread at target

Constraints due to Targetry (2)

- Bunch Compressor Ring (BCR)
 - Nominal maximum lattice functions (β = 20m and D = 4m) implies dimensions of vacuum chamber for clean delivery of beam
 - $A_y \approx 5 \text{cm}$
 - A_x ≈ 15cm
 - Longitudinal instability at injection
- Space charge considerations for new rings
 - Small circumference requires strong magnets
 - Trade-off of beam tube size and dipole magnet strength

Possible Upgrade Paths

- 3-8GeV pulsed Linac convertible to CW
- Increase CW Linac beam current
- RCS to higher energy
- RCS rate increase
- Some combination of above