PHYSICS AT THE FRONTIERS

KATHRYN M. ZUREK
UNIVERSITY OF MICHIGAN

FERMILAB FRONTIERS

WATCH (AND WORK) LIST

Top AFB
B physics anomalies
W + jets

CoGeNT/DAMA anomalies
XENON and LUX below
Higgs pole
AMS and cosmic positrons

MiniBooNe Anomaly Cosmic Radiation Anomaly MINOS $\nu/\bar{\nu}$ discrepancy

New Physics solutions require out-of-the-box models

WATCH (AND WORK) LIST

Top AFB
B physics anomalies
W + jets

CoGeNT/DAMA anomalies
XENON and LUX below
Higgs pole
AMS and cosmic positrons

MiniBooNe Anomaly Cosmic Radiation Anomaly MINOS $\nu/\bar{\nu}$ discrepancy

New Physics solutions require out-of-the-box models

COSMIC FRONTIER

"Discovery" of light dark matter

DAMA, NaI
CoGeNT, Ge

CoGeNT

HUNT FOR DARK MATTER

- Direct conflict with CDMS Ge
- Neutralino from MSSM not viable

• Is 5-7 GeV mass window suggestive of something else?

DARK MATTER AND THE BARYON ASYMMETRY

 In standard picture, DM abundance set by thermal freeze-out

$$\Gamma_{ann} \lesssim H$$

Experimentally, $\Omega_{DM} \approx 5\Omega_b$ Find mechanism $n_{DM} \approx n_b$

Gelmini, Hall, Lin, Barr, Kaplan, Kitano, Low, Farrar, Zaharijas, Fujii, Yanagida

MANY EXAMPLES OF ASYMMETRIC DM

Integrate out heavy state Effective operators:

$$W = Xu^c d^c d^c$$

Standard Model

Inaccessibility

Dark Matter

Luty, Kaplan, KZ

SUB-WEAKLY INTERACTING MASSIVE PARTICLES

SUB-WEAKLY INTERACTING MASSIVE PARTICLES

SUB-WEAKLY INTERACTING MASSIVE PARTICLES

 $M_p \sim 1 \; {\rm GeV}$

Standard Model

Dark Matter

HUNT FOR DARK MATTER

- Indirect Detection
 - "Discovery" of weak scale dark

matter

PAMELA

INDIRECT DETECTION

- Recent Launch of AMS
- Improved constraints
 on propagation model
 --> better
 determination of
 particle physics

Meade, Papucci, Strumia, Volansky

WATCH (AND WORK) LIST

Top AFB
B physics anomalies
W + jets

CoGeNT/DAMA anomalies
XENON and LUX below
Higgs pole
AMS and cosmic positrons

MiniBooNe Anomaly Cosmic Radiation Anomaly MINOS $\nu/\bar{\nu}$ discrepancy

ENERGY FRONTIER

 Search for Higgs and supersymmetry takes front stage

 Likely to push supersymmetric states up just below a TeV

ENERGY FRONTIER

 Search for Higgs and supersymmetry takes front stage

 Likely to push supe up just below a TeV

TOP AFB

Semileptonic

 $A_{FB} = 0.110 \pm 0.039$

Fully Leptonic

CDF 5.3 fb^-1

 $A_{FB} = 0.14 \pm 0.05$

TOP AFB

Mass Dependence

MODELS TO GENERATE

- s-channel or t-channel
 - s-channel: axigluon

 Ferrario and Rodrigo
 - t-channel: flavor
 violating vector or
 scalar
 Jung, Murayama, Pie

Jung, Murayama, Pierce, Wells Shu, Tait, Wang Ligeti, Schmaltz, Tavares Grinstein, Kagan, Trott, Zupan

TO WATCH

- Top-flavor violating resonances
- $(M \rightarrow tj)$
- Single Top
- (M -> jj)

EARLY LHC

• Large couplings to top --> LHC7 search with 1 fb^-1!

B-PHYSICS ANOMALIES

Frevatron like-sign muons

$$a_{sl}^b = -(8.5 \pm 2.8) \times 10^{-3}$$
 $b\bar{b} \to \mu^+ \mu^+ X$

- $begin{cases}
 \mathcal{B}_s \text{ mixing in } \Delta\Gamma_s \text{ and } S_{\psi\phi}
 end{cases}$
- Less significant:
 - measurement of $\sin 2\beta$ in $B_d \to \psi K$ and penguin dominated $b \to sq\bar{q}$
- Maybe there is something flavorful brewing?

WATCH (AND WORK) LIST

Top AFB
B physics anomalies
W + jets

CoGeNT/DAMA anomalies
XENON and LUX below
Higgs pole
AMS and cosmic positrons

MiniBooNe Anomaly Cosmic Radiation Anomaly MINOS $\nu/\bar{\nu}$ discrepancy

INTENSITY FRONTIER

- Neutrino physics anomalies
- MiniBooNE

LSND/MINIBOONE

MiniBooNE

Hard to fit disappearance experiments with 3 + 2 light steriles

COSMIC ANOMALIES

Hamann et al.

• Current data:

 To watch: Planck experiment

Bashinsky, Friedland, KZ

SUMMARY

- Next 2-3 years promise to be actionpacked!
- Look to all frontiers for progress
- With current path, likely to re-shape theory
- Need "outside-the-box" theoretical ideas