
Dmitry Litvintsev
FIFE Workshop
20th-21st June 2016

Best Practices: dCache

dCache: Tiered data access

6/21/16 Dmitry Litvintsev|FIFE Workshop2

SCSI

TCP/IP

TCP, UDP

dC
ac

he

E
ns

to
re

Ta

pe
 ro

bo
t

NFS (G)FTP XRootD WebDAV dCap

•  Public dCache instance currently has about 7PB of disk space.
–  It provides scalable non-POSIX and POSIX-like access to Scientific data

stored on immutable files distributed across multiple data servers.
•  Recent changes (details in next 3 slides):

– Upgraded from 2.6 to 2.12 (2015-08-20, CHG000000009656, 8 hours).
– Tripled SSD capacity for dCache namespace, 400GB -> 1.2 TB

(2015-10-06, CHG000000010110, 3 hours).
– Tripled SSD capacity for dCache namespace, 1.2TB -> 3.5 TB (2016-05-19,

CHG000000011217, 4 hours.
– Upgraded from 2.12 to 2.13 (2016-06-16, CHG000000011360, 2 hours).

Public dCache

3 6/21/1
6

Dmitry Litvintsev|FIFE Workshop

• Not many user visible changed. A lot of improvements,
particularly in NFS and bug fixes.

• Now we publish VO information about file transfers
http://fndca3a.fnal.gov:2288/context/transfers.json
http://fndca3a.fnal.gov:2288/context/transfers.html

What’s new in 2.13

4 6/21/1
6

Dmitry Litvintsev|FIFE Workshop

Public dCache: what’s up with ever growing DB

5

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09
96

-0
1

98
-0

1

00
-0

1

02
-0

1

04
-0

1

06
-0

1

08
-0

1

10
-0

1

12
-0

1

14
-0

1

16
-0

1

18
-0

1

en

st
ire

s
/ d

ay

time

Accumulative # entries / day vs time in dCache namespace

files
dirs

links

Entry type count

file 232,010,959

dir 31,492,680

link 366759

 100000

 1e+06

 1e+07

 1e+08

 1e+09

14
-0

1

14
-0

4

14
-0

7

14
-1

0

15
-0

1

15
-0

4

15
-0

7

15
-1

0

16
-0

1

16
-0

4

16
-0

7

en

st
ire

s
/ d

ay

time

Accumulative # entries / day vs time in dCache namespace since 2014

files
dirs

links

•  In general not a huge problem, but
– dump/restore takes long time
– database schema upgrades take

longer time
– initial “df” command after NFS server

start “hangs” noticeably
•  We are approaching the issue of database

size by trying to reduce each entry space
overhead in dCache namespace DB.
Forthcoming in 2.16 release.

Too many small files?

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

Public dCache: File counts & avg. sizes

6

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

t-9
62

m
ar

sm
u2

e
hy

pr
ne

w
s

co
up

p
du

ne
m

u2
e

e8
98

e-
88

1
t-1

03
4

sd
ss

ho
lo

m
et

er
pr

o
nh

yp
bs

m
t-9

87
e8

71
m

ss
g

p-
99

0
m

in
os de

s
ic

ec
ub

e
no

va
e-

93
8

m
ic

ro
bo

o
ho

tq
cd

hi
sq

e-
90

6
e-

90
7

kt
ev lb
nf

sc
dm

s
lq

cd
th

eo
ry

th
er

m
o

da
rk

si
de

si
m

on
s

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Fi
le

 s
iz

e
[M

B]

fil

es

group name

Average file size and file count in public dCache MB by Unix group name

files
file size

2MB

•  All groups having > 100,000 files
•  dCache is a distributed storage system and latencies associated with staging or even accessing

each file over the network need to be taken into consideration. This is not a filesystem mounted off
a local disk.

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

•  For the same amount of data small files cause:
–  Large number of files per directory.
–  Increase in depth and width of directory tree.
–  Datasets containing millions of files are harder to manage.

•  When dealing with tape:
– Per file overhead to write a file mark (on writes).
– Tape back-hitching when data streaming to tape is interrupted (e.g. for the next file in

queue) (on writes).
– Mount latency (including load time) (on writes and reads).
– Unload (rewind time) (on writes and reads).
– Seek time (on writes and reads).

•  dCache users are shielded from tape related overheads on writes as they occur out of
band.

•  Read tape overheads per file contribute directly to ‘’slow’’ file delivery for files that are not
cached on disk.

•  Our current definition of small file is 200MB.
•  Some small files may not belong to storage system (like file describing other file’s

metadata, or constants files etc.). These data best belong to a database (SAM or
calibrations/conditions DB).

Best Practice: avoid millions of small files

7 6/21/16 Dmitry Litvintsev|FIFE Workshop

•  We offer Small File Aggregation Feature (SFA) in Enstore that automatically and
seamlessly packs small files into large files that are stored to tape.

– Pros:
• User does not need to worry about small files.
• Small files in the system have less impact on others when dealing with tapes as
latencies associated with small files are minimized (less queueing in Enstore).

– Cons:
• Due to relatively random packing of files in SFA packages, staging small files
back from tape may incur significant latencies when reading files if files are
dependent (e.g. a data file and JSON file that describes data) and end up in
different packages.

• Writes to SFA are currently not distributed and performance is limited by a single
appliance data server.

•  Experiments are encouraged to consider packing or concatenating/merging their files
intended for data analysis based on their own criteria rather than relying on automated
SFA packaging:

– Only experiments themselves know their data and can provide locality of reference
(e.g. packaging aux. files together with their data file for efficient access).

•  SFA is good for independent small files that do not require reading in specific sequence,
so that in case they need to be staged there no dependency on files across packages.

Small Files: pros and cons of SFA

8 6/21/16 Dmitry Litvintsev|FIFE Workshop

Public dCache: peaks and valleys

9

670 TB transferred on 2016-05-05

Can we do better?

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

Public dCache vs CMS T1 disk

10

60 K

15 K

CMS

Public dCache

CMS : mostly running

Public dCache : mostly queueing

Why?

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

m

ov
er

s

m

ov
er

s

Protocols: breakdown of reads in the last 30 days

11

70%

14%

8%
5%
3%

82%

18%

0%

Public dCache CMS T1 Disk

CMS is mostly streaming, Public dCache is mostly copying?

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

How much data is actually read

12

•  Percentage of all reads vs percentage of file read by select experiments
using “streaming” protocols like XRootD, NFS, DCap

•  Copy would “win” if a file is read more than once (>100% in this plot)

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

Pe
rc

en
ta

ge
 o

f r
ea

ds

Percentage of file read

Percentage of reads vs percentage of file read in last 30 days by select experiments

nova
minerva

mu2e
uboone

des

•  There would be no issue if pool nodes had infinite I/O and infinite
bandwidth.

•  We have to restrict number of active GFTP movers (transfers) per pool
to 20 to avoid I/O subsystem overheating on pool nodes when they are
hit by massive wave of fast transfers from CPU farms on Fermilab
network or other fast networks.

•  On the other hand slow transfers over the WAN occupy active slots for
a long time eventually clogging up the system and leading to GFTP
request queueing resulting in low job efficiency.

•  Separating LAN and WAN traffic by directing them to different pools
becomes cumbersome once there are many pool groups of different
flavor belonging to different experiments.

•  Streaming of data event by event does not stress pool I/O and allows
opening of many more active mover slots per pool. E.g. we have 1000
XRootD active movers vs 20 GFTP per pool.

Copy vs Streaming

13 6/21/1
6

Dmitry Litvintsev|FIFE Workshop

• E.g. instead of doing:

• Do :

dCache best practice: do streaming (examples)

14

{cp,globus-url-copy,wget,xrdcp} /pnfs/foo/bar /local/disk
…
root[0] f = TFile::Open(“/local/disk/bar”);

// access via xrootd
root[0] f = TFile::Open(“root://fndca1/pnfs/fs/usr/foo/bar”);
…
// or dcap
root[0] f = TFile::Open(“dcap://fndca1/pnfs/fs/usr/foo/bar”);
…
// or over NFS v4.1 or NFS v3 and dcap preload library
root[0] f = TFile::Open(“/pnfs/fs/usr/foo/bar”);

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

•  To keep job efficiency high and avoid wasting resources, and
frustration it is best practice to run on ONLINE files, that is files that are
in dCache pools.

•  How to determine if file is ONLINE?

•  Meaning of file locality

Best practice: run on ONLINE files to avoid queueing

15

cat /pnfs/<experiment>/”.(get)(<file name>)(locality)”
E.g:
cat ".(get)(ep047d08.0042dila)(locality)"
NEARLINE

file locality meaning

ONLINE file is only in disk cache (and not on tape)

ONLINE_AND_NEARLINE file is in disk cache (and also on tape)

NEARLINE file is not in cache (on tape)

UNAVAILABLE file is unavailable (e.g. it is not on tape and the pool
where it is located is down)

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

• 624 incident tickets assigned to “Storage Service” or “Data
Movement development” since SNOW launched

Public dCache: problems? we have a share of.

16 6/21/1
6

Dmitry Litvintsev|FIFE Workshop

•  NFS issues pop-up from time to time though much less then pre 2.12. Often
caused by unexpected behavior of NFS client, particularly when it comes to
handling of local cache.

–  more fixes/workarounds on server side in 2.13
•  Access to file is slow/hanging (using any protocol):

–  can be be caused by a number of things, but typically:
• User is trying to access a file which is on tape and not in cache, expect
latencies associated with tape access.

• Source pool is not available (e.g. down) causing file to be fetched from
tape; or transfer sleeps “indefinitely” (until pool becomes available) in
case of non-tape backed files

•  Source pool is busy and maximum number of active transfers has been
reached. In this case transfer is queued and will be scheduled on FIFO
basis.

•  More rarely caused by a failure of SPOF dCache component or
external component(s) (like GUMS server)

dCache problems

17 6/21/1
6

Dmitry Litvintsev|FIFE Workshop

• A serious one, reported on incident INC000000681473.
Silent data corruption when using NFS v4.1. When pool is
badly overloaded we have seen cases when copies in
dCache are corrupted with no error generated. Correct size,
wrong checksum. Still under investigation. A handful of
cases.

• Best practice is to compare Alder32 checksum of original
file and its copy in PNFS after you copied file in dCache.

• Only SRM protocol does it automatically.
• How to extract checksum of a file from PNFS?

NFS issues, best practices

18

cat /pnfs/<experiment>/”.(get)(<file name>)(checksum)”
E.g.:
cat /pnfs/fs/usr/test/litvinse/world_readable/".(get)(ep047d08.0042dila)(checksum)"
ADLER32:fe99e83e

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

•  dCache NFS v4.1 interface provides a convenient POSIX-like way to access
your data. This convenience helps to acquire certain habits that may interfere
with scalability and portability of experiment’s data handling framework as it
evolves and data volume grows:

–  Reliance on mounted NFS v4.1 limits analysis to Fermilab domain.
–  Building file catalogs based on directory trees soon runs into scalability

issues. Use SAM for dataset management.
–  Data access model that is deeply based on POSIX access to files will have

issues with adopting new protocols/technologies that could be more
performant than pNFS access (less of an issue if data access is based on
root with its pluggable I/O interface).

•  Realizing these pitfalls and taking into account evolving industry trend of
moving away from POSIX the SCSA committee came up with Fermilab’s
Computing Storage Architecture for HTC (presented yesterday by Gerard). The
recommendations:

–  Do not support POSIX access on worker nodes.
–  Retain POSIX access only for interactive analysis or in case by case basis.

A word on NFS

6/21/1
6

Dmitry Litvintsev|FIFE Workshop19

• We are trying to keep current the “How to” document:
–  Using Public dCache at Fermilab
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?
docid=5399

Best Practice: read the manual

20 6/21/1
6

Dmitry Litvintsev|FIFE Workshop

• Avoid creating millions of small (under 200MB files).
–  Consider all effects of SFA before deicing to rely on it fully for
data processing.

–  Merge/concatenate/package your files based on your
workflows.

• Streaming vs copying.
–  Prefer streaming.

• End-to-end checksumming.
• Use ONLINE files.

Summary

21 6/21/1
6

Dmitry Litvintsev|FIFE Workshop

Extra Slides

6/21/1
6

Dmitry Litvintsev|FIFE Workshop22

•  If your transfer are often queued or files happen to be on tape only in many cases
client-side timeout limits get tripped. How to handle this?

•  Here are two examples :
–  GFTP, use:

 -stall-timeout | -st <seconds>

 How long before canceling/restarting a
 transfer with no data
 movement. Set to 0 to disable.
 Default is 600 seconds.

–  root access to files via xrootd, add this line to your .rootrc file:
 XNet.MaxRedirectCount: 255
–  if using xrdcp add
 xrdcp ... –DIRedirectLimit 255 -DIRequestTimeout 14400 ...

Dealing with client side timeouts

23 6/21/1
6

Dmitry Litvintsev|FIFE Workshop

•  “Unknown Error 523” or, Input/Output error when listing
directories.

• Or Input/Output error (depending on SLF version):

• Remedy is to cause kernel to drop clean caches:

 (requires root access though)

NFS issues, best practices

24

ls /pnfs/exper/foo
ls: reading directory /pnfs/exper/foo: Unknown error 523

ls /pnfs/exper/foo
ls: reading directory /pnfs/exper/foo: Input/output error

echo 3 > /proc/sys/vm/drop_caches

6/21/1
6

Dmitry Litvintsev|FIFE Workshop

•  If NFS is extremely slow and there is high load. Client host
is otherwise healthy. Any access to NFS ends up in ‘D’
state.

–  Open SNOW ticket specifying your host name. We should be
able to reset this mount on NFS server side w/o you having to
resort to rebooting your host.

NFS issues, best practices

25 6/21/1
6

Dmitry Litvintsev|FIFE Workshop

