

Alexander Radovic College of William and Mary

Alexander Radovic College of William and Mary

SNeutrino Oscillations 101

SNeutrino Oscillations 101

"I have done a terrible thing, I have postulated a particle that cannot be detected." -Wolfgang Pauli

"I have done a terrible thing, I have postulated a particle that Capitor be detected." -Wolfgang Pauli

μ s exposure of the NOvA Far Detector

Time-zoom on 10 μ s interval during NuMI beam pulse

Close-up of neutrino interaction in the NOvA Far Detector

The Motivation

Alexander Radovic

Why Study Neutrinos?

Neutrino oscillations raises as many questions as it answers:

- Why is lepton sector mixing much larger than quark sector mixing?
- What is the hierarchy of neutrino masses and how does this effect searches for a majorana neutrino?
- Is there CP violation in the lepton sector? Could it be large enough to explain observed matter antimatter asymmetry of our universe?

Measuring neutrino oscillations is all about measuring how neutrinos change between different lepton flavor states as a function of distance traveled and neutrino energy. $1.27\Delta m_{atm}^2 L$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \frac{\sin^2(2\theta_{23})}{\sin^2}$$

- That means that any oscillation analysis can benefit from precise identification of the interaction in two ways:
 - Estimating the lepton flavor of the incoming neutrino.
 - Correctly identifying the type of neutrino interaction, to better estimate the neutrino energy, aka is it a quasi elastic event or a resonance event?

- Furthermore we as we want to accurately estimate the neutrino energy we need precise & robust reconstruction:
 - Identifying reconstructed objects in the event.
 - R-CNNs to isolate activity related to the interaction of interest.
 - Ultimately semantic segmentation to combine local and global information smoothly for hit-by-hit identification.

- Our detectors are also often the perfect domain:
 - Large ~uniform volumes where spatially invariant response is a benefit.
 - Usually only one or two detector systems.

- Our detectors are also often the perfect domain:
 - Large ~uniform volumes where spatially invariant response is a benefit.
 - Usually only one or two detector systems.

NOvA

Alexander Radovic

X NOvA Event Topologies

1 radiation length = 38cm (6 cell depths, 10 cell widths)

Our Input

Our input "image", is a pair of maps of the hits in a tight space/time window. One for the X view and another for the Y view. Each "pixel" is the calibrated energy response in that cell. All "images" have the same dimensions- 100 planes by 80 cells.

The Training Sample

4.7 million, minimally preselected simulated events, pushed into LeveIDB databases: 80% for training and 20% for testing. Rescale calibrated energy depositions to go from 0 to 255 and truncate to chars for dramatically reduced file size at no loss of information Fine tuned with 5 million

cosmic data events taken from an out of beam time minimal bias trigger.

Our Architecture

Based on the first googlenet. Largest innovation is splitting each view into a separate sequence of layers and concatenating the outputs near the end of the network. Named "Convolutional Visual Network", or **CVN**.

The architecture attempts to categorize events as {v_µ, v_e, v_τ } × {QE,RES,DIS}, NC, or Cosmogenic.

Utilizes a "softmax" output.

Built in the excellent CAFFE framework: <u>http://caffe.berkeleyvision.org/</u>

Example CVN Kernels In Action: First Convolution

Х

	$\int_{V^{*}}$		$\frac{1}{k_{\rm eff}^{\rm opt} - 1} \frac{1}{k_{\rm eff}^{\rm opt} - 1}$				
in the second se						n Alan Barri Ma	
				**************************************	a la		
	s. S			1. 			
j	***	the second second			- 5 		la anti-

Here the earliest convolutional layer in the network starts by pulling out primitive shapes and lines.

Already "showers" and "tracks" are starting to form.

Example CVN Kernels In Action: First Convolution

Х

	$\sim $	11. S	1 941 - 1 ⁹⁶ 10	2 m 10			
				l.		an la chuir an l	
X		¥ S	k.			5	
2 X 2					1 1 1 - Ye	2 24 10	S. S.
						r. South	
			r Seo		5		ξ.
۲.	N.	5	e Sa	Z. Second			$a_{i} w^{i}$
	9 Se rie					19 24 259	est.

Here the earliest convolutional layer in the network starts by pulling out primitive shapes and lines.

Already "showers" and "tracks" are starting to form.

Example CVN Kernels In Action: First Inception Module Output

Deeper in the network, now after the first inception module we can see more complex features have started to be extracted.

Some seem particularly sensitive to muon tracks, EM showers, or hadronic activity.

Alexander Radovic

Example CVN Kernels In Action: First Inception Module Output

Deeper in the network, now after the first inception module we can see more complex features have started to be extracted.

Some seem particularly sensitive to muon tracks, EM showers, or hadronic activity.

Alexander Radovic

t-SNE Representation of Test Sample

t-SNE projection of final features to 2D. Truth labels, training sample subset.

Alexander Radovic

t-SNE Representation of Test Sample

Alexander Radovic

After oscillations, cosmic rejection cuts, data quality cuts:

Excellent separation of the v_{μ} sample, but ~identical to existing, much simpler, KNN selector. Matches expectation-hard to miss a muon track. Space to improve in cosmic rejection.

After oscillations, cosmic rejection cuts, data quality cuts:

However our CNN achieves **73%** efficiency and **76%** purity on \mathbf{v}_e selection at the $s/\sqrt{s+b}$ optimized cut. Equivalent to **30%** more exposure with the old PIDs.

After oscillations, cosmic rejection cuts, data quality cuts:

"A Convolutional Neural Network Neutrino Event Classifier" A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle <u>https://arxiv.org/abs/1604.01444</u> Journal of Instrumentation, Volume 11, September 2016

After oscillations, cosmic rejection cuts, data quality cuts:

"Constraints on oscillation parameters from v_e appearance and v_μ disappearance in NOvA" NOvA Collaboration <u>https://arxiv.org/pdf/1703.03328.pdf</u> Submitted to PRL

The Future

Alexander Radovic CNNs for Neu

The original dream

Reconstruction?

Where we're going, we don't need reconstruction.

Alexander Radovic

Where we're really going

Alexander Radovic

Prong ID

Can we use CVN to ID our reconstructed objects, like showers?

Prong ID

Very promising! Why stop at reconstructed showers though?

Confusion Matrix (prong purity > 0.50)

Alexander Radovic

Semantic segmentation takes advantage of information at every lay of a CNN to perform a identification at the pixel level.

http://www.cs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

An Active Field!

Daya Bay

MicroBooNE

JINST 12 (2017) no.03, P03011

An Active Field!

MINERvA and MENNDL

PhyStat-nu Fermilab 2016 (19-September 21, 2016)

Lariat and ProtoDUNE

Private communication, Robert Sutlej

Alexander Radovic

An Active Field!

JINST 12 (2017) no.01, T01004

Alexander Radovic

Conclusions

- The first high energy particle physics measurement to use a convolutional neural network learning was a neutrino oscillation measurement from the NOvA experiment!
- Just the tip of the iceberg at NOvA! Huge amounts of room to optimize our classification network, and to explore other applications of convolutional neural networks.
- Almost every neutrino experiment seems to be investigating the use of CNNs in their analysis and reconstruction of neutrino interactions, set to be particularly vital for liquid argon detectors which are a core part of the planned DUNE LBL oscillation experiment.

Many thanks to the NOvA collaboration, Fermilab National Accelerator laboratory, and to the National Science Foundation.

Confusion Matrix

t-SNE Representation of Test Sample

Truth labels, training sample subset.

Alexander Radovic

NOvA Event Topologies

1 radiation length = 38cm (6 cell depths, 10 cell widths)

Alexander Radovic

Training Performance

No sign of overtraining- exceptional training test set performance agreement!

t-SNE Representation of Test Sample

Conventional PID: v_{μ} Selection

$v_e \text{ ND Selected Sample}$

- Selection optimized to favor parameter measurementincreased signal efficiency by including lower purity bins
- Use ND data to predict background in FD
 - NC, CC, beam v_e each propagate differently
 - constrain beam v_e using selected v_μ CC spectrum
 - \bullet constrain $v_{\mu}CC$ using Michel Electron distribution
- Final correction: beam v_e up by 4%, NC up by 10%, v_μ CC up by 17%.

Alexander Radovic

ND data Total MC × 10²⁰ PO1 Flux Uncert. 10⁵ NC Beam v CC - v,, CC Events / 3.72 10 10² 0.2 0.8 0.0 0.6 1.0CVN v_e classifier 3000 ND data Total MC PO Flux Uncert. NC Beam v_{o} CC 10²⁰ 2000 - v ... CC Events / NOvA Status and Future⁰ Reconstructed neutrino energy (GeV)

NOvA Preliminary

$v_e ND$ Selected Sample

- Selection optimized to favor parameter measurementincreased signal efficiency by including lower purity bins
- Use ND data to predict background in FD
 - NC, CC, beam v_e each propagate differently
 - constrain beam v_e using selected v_μ CC spectrum
 - \bullet constrain $v_{\mu}CC$ using Michel Electron distribution
- Final correction: beam v_e up by 4%, NC up by 10%, v_μ CC up by 17%.

Alexander Radovic

ND data 1000 Total MC 10²⁰ POT Flux Uncert. NC 800 Beam v_{o} CC v CC 600 Events / 3.72 400 200 0.80 0.85 0.90 0.95 0.75 1.00 $\text{CVN}\,\nu_e$ classifier 3000 ND data Total MC PO Flux Uncert. NC Beam v_{o} CC 10²⁰ 2000 - v ... CC 22 Events / NOvA Status and Future⁰ Reconstructed neutrino energy (GeV)

NOvA Preliminary

How to check our performance on our signal sample using the Near Detector? Try faking appeared electron neutrinos by creating hybrid data/simulation events.

How to check our performance on our signal sample using the Near Detector? Try faking appeared electron neutrinos by creating hybrid data/simulation events.

NOvA Status and Future

How to check our performance on our signal sample using the Near Detector? Try faking appeared electron neutrinos by creating hybrid data/simulation events.

NOvA Status and Future

NOvA Preliminary

Excellent data/MC agreement in MRE sample. Efficiency difference <1%. Smaller than for previous PIDs:

PID	Sample	Preselection	PID	Efficiency	Efficiency diff %
CVN	Data	262884	188809	0.718222	0.36%
	MC	277320	199895	0.720809	-0.3070
LEM	Data	262884	153599	0.584284	0.720/
	MC	277320	163218	0.588555	-0.73%
LID	Data	262884	175492	0.667564	2.00%
	MC	277320	181267	0.653638	2.09%

Signal Cross Checks: Muon Removed Bremsstrahlung

But what about the Far Detector? Try using cosmogenic activity. We find Bremsstrahlung, remove the associated muon, and see what CVN does in data vs. simulation.

Data Driven Cross Checks: Muon Removed Bremsstrahlung

But what about the Far Detector? Try using cosmogenic activity. We find Bremsstrahlung, remove the associated muon, and see what CVN does in data vs. simulation.

Signal Cross Checks: Muon Removed Bremsstrahlung

NOvA Preliminary

But what about the Far Detector? Try using cosmogenic activity. We find Bremsstrahlung, remove the associated muon, and see what CVN does in data vs. simulation.

v_e FD Predicted Sample

- Extrapolate each component in bins of energy and CVN output.
- Expected event counts depend on oscillation parameters. **Signal events**

 $(\pm 5\%$ systematic uncertainty):

NH, 3π/2,	IH, π/2,
28.2	11.2

Background by component

 $(\pm 10\%$ systematic uncertainty):

Total BG	NC	Beam v _e	v_{μ} CC	$v_{\tau} CC$	Cosmics
8.2	3.7	3.1	0.7	0.1	0.5

2π

v_e FD Selected Sample

>8σ electron neutrino appearance signal

Observe 33 events in FD. Background Expectation 8.2±0.8.

Alternate selectors from 2015 analysis show consistent results LID: 34 events, 12.2±1.2 BG expected LEM: 33 events, 10.3±1.0 BG expected

Alexander Radovic

NOvA Status and Future

v_e candidates, when & where?

Simulation

- Highly detailed end-to-end simulation chains:
- Beam hadron production, propagatio, neutrino flux: FLUKA/FLUGG
- Cosmic ray flux: CRY
- Neutrino Interactions and FSI modeling: GENIE
- Detector Simulation: GEANT4
- Readout electronics and DAQ: Custom simulation routines

Reconstruction

Three key pieces:

- Vertexing: use lines of energy deposition formed with hough transforms to find intersections
- Clustering: find clusters in angular space around the vertex and merge views via topology and prong dE/dx
- Tracking: Trace particle trajectories using a kalman filter, example below

