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“I have done a terrible thing, I have postulated a particle that 
cannot be detected.” 

-Wolfgang Pauli
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550 𝜇s exposure of the NOvA Far Detector

Hits Colored by Charge



Time-zoom on 10 𝜇s interval during NuMI beam pulse

Hits Colored by Charge

100ns Resolution



Close-up of neutrino interaction in the NOvA Far Detector

Hits Colored by Charge

100ns Resolution How best to identify this event?



The Motivation
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Why Study Neutrinos?
Neutrino oscillations raises as many questions as it answers: 
• Why is lepton sector mixing much larger than quark sector 

mixing? 
• What is the hierarchy of neutrino masses and how does this 

effect searches for a majorana neutrino? 
• Is there CP violation in the lepton sector? Could it be large 

enough to explain observed matter antimatter asymmetry of 
our universe?

Illustration: Sandbox Studio via symmetry magazine
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Why Convolutional Neural 
Networks?

Alexander Radovic CNNs for Neutrino Experiments

• Measuring neutrino oscillations is all about measuring how 
neutrinos change between different lepton flavor states as 
a function of distance traveled and neutrino energy. 
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Monte Carlo
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• That means that any oscillation analysis can benefit from 
precise identification of the interaction in two ways: 
• Estimating the lepton flavor of the incoming neutrino. 
• Correctly identifying the type of neutrino interaction, to 

better estimate the neutrino energy, aka is it a quasi 
elastic event or a resonance event? 

Quasi-Elastic Resonance
13

Why Convolutional Neural 
Networks?



Alexander Radovic CNNs for Neutrino Experiments

• Furthermore we as we want to 
accurately estimate the neutrino 
energy we need precise & robust 
reconstruction: 
• Identifying reconstructed objects 

in the event. 
• R-CNNs to isolate activity related 

to the interaction of interest. 
• Ultimately semantic segmentation 

to combine local and global 
information smoothly for hit-by-hit 
identification. 
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• Our detectors are also often the perfect domain: 
• Large ~uniform volumes where spatially invariant 

response is a benefit.  
• Usually only one or two detector systems. 
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Why Convolutional Neural 
Networks?
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• Our detectors are also often the perfect domain: 
• Large ~uniform volumes where spatially invariant 

response is a benefit.  
• Usually only one or two detector systems. 
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NOvA
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Our Input
Our input “image”, is a pair of maps of the hits in a tight 
space/time window. One for the X view and another for the Y 
view. Each “pixel” is the calibrated energy response in that 
cell. All “images” have the same dimensions- 100 planes by 
80 cells. 

Alexander Radovic CNNs for Neutrino Experiments

X View Y View
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The Training Sample
• 4.7 million, minimally 

preselected simulated events, 
pushed into LevelDB 
databases: 80% for training 
and 20% for testing. 

• Rescale calibrated energy 
depositions to go from 0 to 
255 and truncate to chars for 
dramatically reduced file size 
at no loss of information 

• Fine tuned with 5 million 
cosmic data events taken from 
an out of beam time minimal 
bias trigger. 
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Our Architecture
Based on the first googlenet. Largest 
innovation is splitting each view into a separate 
sequence of layers and concatenating the 
outputs near the end of the network. Named 
“Convolutional Visual Network”, or CVN. 

The architecture attempts to categorize    
events as {νµ, νe, ντ } × {QE,RES,DIS}, 
NC, or Cosmogenic. 

Utilizes a “softmax” output.

Built in the excellent CAFFE framework:  
http://caffe.berkeleyvision.org/
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Example CVN Kernels In Action: 
First Convolution

X

=

Y view

Here the earliest convolutional 
layer in the network starts by 
pulling out primitive shapes and 
lines.  

Already “showers” and “tracks” 
are starting to form.
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First Convolution



Example CVN Kernels In Action: 
First Inception Module Output

Deeper in the 
network, now after 
the first inception 
module we can see 
more complex 
features have started 
to be extracted. 

Some seem 
particularly sensitive 
to muon tracks, EM 
showers, or hadronic 
activity.

Alexander Radovic CNNs for Neutrino Experiments 24
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t-SNE Representation of Test 
Sample

Alexander Radovic CNNs for Neutrino Experiments

Truth labels, training sample subset.
t-SNE projection of final features to 2D.
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t-SNE Representation of Test 
Sample
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NC

νe QE

νµ QE

νµ DIS
νe DIS

Truth labels, training sample subset.
t-SNE projection of final features to 2D.
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The Bottom Line

Alexander Radovic CNNs for Neutrino Experiments
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Excellent separation of the νµ sample, but ~identical to 
existing, much simpler, KNN selector. Matches expectation- 
hard to miss a muon track. Space to improve in cosmic 
rejection.

After oscillations, cosmic rejection cuts, data quality cuts:
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However our CNN achieves 73% efficiency and 76% purity on 
νe selection at the                optimized cut.  
Equivalent to 30% more exposure with the old PIDs.

s/
p
s+ b

After oscillations, cosmic rejection cuts, data quality cuts:
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After oscillations, cosmic rejection cuts, data quality cuts:
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“A Convolutional Neural Network Neutrino Event Classifier” 
A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. 
Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle 
https://arxiv.org/abs/1604.01444 
Journal of Instrumentation, Volume 11, September 2016

https://arxiv.org/abs/1604.01444


The Bottom Line
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After oscillations, cosmic rejection cuts, data quality cuts:
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“Constraints on oscillation parameters from νe appearance and νµ 
disappearance in NOvA” 
NOvA Collaboration 
https://arxiv.org/pdf/1703.03328.pdf  
Submitted to PRL

https://arxiv.org/pdf/1703.03328.pdf


The Future
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The original dream

Alexander Radovic CNNs for Neutrino Experiments

Reconstruction?

Where we’re going, we don’t need 
reconstruction.
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Where we’re really going

Alexander Radovic CNNs for Neutrino Experiments

Deep Learning

Conventional  
Reconstruction
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Prong ID

Alexander Radovic CNNs for Neutrino Experiments

Can we use CVN to ID our reconstructed objects, like 
showers?
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Very promising! Why stop at reconstructed showers though?
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Semantic Segmentation

Alexander Radovic CNNs for Neutrino Experiments

http://www.cs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 

Semantic segmentation takes advantage of information at 
every lay of a CNN to perform a identification at the pixel 
level.
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An Active Field!

Alexander Radovic CNNs for Neutrino Experiments

arXiv:1601.07621

Daya Bay MicroBooNE

JINST 12 (2017) no.03, P03011 
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An Active Field!
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MINERvA and MENNDL

PhyStat-nu Fermilab 2016 (19-September 21, 2016)

EM / hadronic component discrimination

electron from 
π!µ!e decay

showers 
from π0 decay

Lariat and ProtoDUNE

Private communication, Robert Sutlej
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An Active Field!
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NEXT

JINST 12 (2017) no.01, T01004
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Conclusions

Alexander Radovic CNNs for Neutrino Experiments

• The first high energy particle physics measurement to use a 
convolutional neural network learning was a neutrino 
oscillation measurement from the NOvA experiment! 

• Just the tip of the iceberg at NOvA! Huge amounts of room 
to optimize our classification network, and to explore other 
applications of convolutional neural networks. 

• Almost every neutrino experiment seems to be investigating 
the use of CNNs in their analysis and reconstruction of 
neutrino interactions, set to be particularly vital for liquid 
argon detectors which are a core part of the planned DUNE 
LBL oscillation experiment.

41



Q&A

Many thanks to the NOvA collaboration, Fermilab National Accelerator laboratory, 
and to the National Science Foundation.



Confusion Matrix
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t-SNE Representation of Test 
Sample

Alexander Radovic CNNs for Neutrino Experiments

Truth labels, training sample subset.

NC

νe DIS

νµ QEνµ DIS

νe QE

Cosmic
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NOνA Event Topologies

1 radiation length = 38cm (6 cell depths, 10 cell widths)

CNNs for Neutrino ExperimentsAlexander Radovic
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Training Performance
No sign of overtraining- exceptional training test set 
performance agreement!



t-SNE Representation of Test 
Sample

Alexander Radovic CNNs for Neutrino Experiments

t-SNE projection of final features to 2D. Reco (left) or truth (right) labels, 
 training sample subset.
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Conventional PID:  
ν

µ
 Selection

11NOvA Status and Future



Reconstructed neutrino energy (GeV)
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• Selection optimized to favor 
parameter measurement- 
increased signal efficiency by 
including lower purity bins 

• Use ND data to predict 
background in FD 

• NC, CC, beam νe each 
propagate differently 

• constrain beam νe using 
selected νμ CC spectrum 

• constrain νμ CC using Michel 
Electron distribution 

• Final correction: beam νe up by 4%, 
NC up by 10%, νμ CC up by 17%.
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• Selection optimized to favor 

parameter measurement- 
increased signal efficiency by 
including lower purity bins 

• Use ND data to predict 
background in FD 

• NC, CC, beam νe each 
propagate differently 

• constrain beam νe using 
selected νμ CC spectrum 

• constrain νμ CC using Michel 
Electron distribution 

• Final correction: beam νe up by 4%, 
NC up by 10%, νμ CC up by 17%.



Alexander Radovic NOvA Status and Future

How to check our performance on our signal sample using 
the Near Detector? Try faking appeared electron neutrinos by 
creating hybrid data/simulation events.

Signal Cross Checks: Muon 
Removed Electron Added

20
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How to check our performance on our signal sample using 
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Excellent data/MC 
agreement in MRE sample. 
Efficiency difference <1%. 
Smaller than for previous 
PIDs:

Signal Cross Checks: Muon 
Removed Electron Added



Signal Cross Checks: Muon 
Removed Bremsstrahlung

Alexander Radovic NOvA Status and Future 22

But what about the Far Detector? Try using cosmogenic 
activity. We find Bremsstrahlung, remove the associated 
muon, and see what CVN does in data vs. simulation.



Data Driven Cross Checks: Muon 
Removed Bremsstrahlung

Alexander Radovic NOvA Status and Future 22

But what about the Far Detector? Try using cosmogenic 
activity. We find Bremsstrahlung, remove the associated 
muon, and see what CVN does in data vs. simulation.
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Signal Cross Checks: Muon 
Removed Bremsstrahlung
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But what about the Far Detector? Try using cosmogenic 
activity. We find Bremsstrahlung, remove the associated 
muon, and see what CVN does in data vs. simulation.



νe FD Predicted Sample

Alexander Radovic NOvA Status and Future

Total BG NC Beam νe νµ CC ντ CC Cosmics

8.2 3.7 3.1 0.7 0.1 0.5

NH, 3π/2, IH, π/2, 
28.2 11.2

Signal events 
(±5% systematic uncertainty): 

Background by component  
(±10% systematic uncertainty):

• Extrapolate each 
component in bins of 
energy and CVN output. 

• Expected event counts 
depend on oscillation 
parameters. 
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νe FD Selected Sample

Alexander Radovic NOvA Status and Future

Observe 33 events in FD. Background Expectation 8.2±0.8.
>8σ electron neutrino appearance signal

Alternate selectors from 2015 analysis show consistent results 
LID: 34 events, 12.2±1.2 BG expected 
LEM: 33 events, 10.3±1.0 BG expected
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νe candidates, when & where?
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Simulation

Alexander Radovic NOvA Status and Future

Simulation: Locations of neutrino interactions  
that produce activity in the Near Detector

X 
(m

)
(linear scale)

viewed from above

Highly detailed end-to-end simulation chains: 
• Beam hadron production, propagatio, neutrino flux: FLUKA/FLUGG 
• Cosmic ray flux: CRY 
• Neutrino Interactions and FSI modeling: GENIE 
• Detector Simulation: GEANT4 
• Readout electronics and DAQ: Custom simulation routines



Reconstruction

Alexander Radovic NOvA Status and Future

Three key pieces: 
• Vertexing: use lines of 

energy deposition formed 
with hough transforms to 
find intersections  

• Clustering: find clusters in 
angular space around the 
vertex and merge views via 
topology and prong dE/dx 

• Tracking: Trace particle 
trajectories using a kalman 
filter, example below


