

Reformatting Beams and Associated Issues

Valeri Lebedev Fermilab

Objectives

- Discussion of limitations on the Project X parameters coming from
 - ◆ Injection to Recycler
 - ◆ Injection to Accumulator ring
 - ♦ Bunch compression in Buncher ring

Fermilab Accelerator Advisory Committee July 28-30, 2010

Beam H Strip-injection to Recycler

- Foil strip injection
 - ◆ Carbon foil
 - Liquid metal stream
- Laser strip injection

Carbon foil strip injection to Recycler

- Foil will be destroyed at the first pulse for one pulse injection
- 6 pulses at 10 Hz give enough time for radiative cooling between pulses
- Transverse painting is designed to
 - Minimize the number of secondary passages and foil heating
 - ◆ To make correlated x-y painting with radius increase for each next pulse
 - Injected beam does not move on foil

 Closed orbit describes almost a quarter of circle (forward and back)

Injected beam phase space matched to the stored beam phase space:

[mm]

x [mm]

 $\beta_{linac} = 0.345 \beta_{ring}$, $\alpha_{linac} = 0.345 \alpha_{ring}$

3

Beam and painting parameters

Linac current	1 m <i>A</i>
Pulse length	4.2 ms
Number of pulses	6
Repetition rate	10 Hz
Ring β -functions, $\beta_x = \beta_y$	60 m
Rms norm. linac emittance	0.5 mm mrad
Norm. ring accept.@ 8 GeV	40 mm mrad
Thickness of carbon foil	600 μ g
Power lost at injection	9 kW
with 0.8 s MI cycle	

Particle loss

Missing foil	2.2%
Single scattering	0.24%
Multiple scattering	0.5%
Not stripped	0.5%
Total	3.5%

Number of foil hits per particle of single injection pulse

Density of particle passes through foil (mm⁻² per particle of single pulse)

- Foil heating by linac beam is ~20% of foil heating due to secondary passages of stored particles
- To increase radiative foil heating the foil is tilted by 45% deg. relative to the beam direction

Dependence of maximum foil temperature on time, only radiative cooling is taken into account

- lacktriangle With chosen parameters the foil temperature stays <1150 \mathcal{C}°
 - Required for good reliability
- Increase of β -functions at the foil would reduce the power density and foil temperature but increases beam loss due to single scattering
- Injection at 8 GeV looks possible but does not look as pretty as 2
 GeV injection to RCS
 - → ~4 times larger beam power loss at injection (8 GeV / 2 GeV)

Strip-injection to Recycler through thin liquid Li thin film*

- Li stream is formed by a nozzle (\emptyset 0.5 mm)
 - Pressure ~5 MPa (50 atm), $v \approx 130$ m/s
 - ♦ Entire beam is painted in one pulse
 - Twice larger thickness (1.3 mg/cm²)
 to achieve stripping inefficiency
 of ~0.5% (as for carbon foil)
- One pass circular X-Y painting is used
 - ~4 times larger number of secondary hits
 - 1.3% single scattering loss
 - In difference to carbon foil it has negligible heating, $\Delta T \sim 5 \text{ K}^{\circ}$
- In experiments carried out in ANL the stream edge was not quite stable and had significantly larger thickness
 - Has to be resolved for beam stripping in a ring
- Reliability, vacuum, etc. ???

^{*} Y. Momozakia; 1 J. Nolen, b C. Reed, a V. Novicka and J. Specht, ANL Reformatting Beams and Associated Issues, Valeri Lebedev, Fermilab AAC, July 28-30, 2010

Laser Assisted Stripping to Recycler (Danilov, PRST 6, 053501)

Step 1: Lorentz Stripping

$$H^- \rightarrow H^0 + e^-$$

Step 2: Laser Excitation

$$H^{-} \rightarrow H^{0} + e^{-}$$
 $H^{0} (n=1) + \gamma \rightarrow H^{0*} (n=3)$ $H^{0*} \rightarrow p + e^{-}$

Step 3: Lorentz Stripping

$$\mathsf{H}^{0^*} \to \mathsf{p} + \mathsf{e}^{-}$$

- 3 step stripping reduces the laser power to a practical value
 - ♦ Cross section of resonance excitation is much larger
 - SNS plans to use n=3 at 1 GeV (γ =2)
 - σ decreases with n encrease
 - \Rightarrow n=2 is preferable for 8 GeV
 - Lorentz stripping from n=2 is not a problem for 8 GeV
 - Both Lorentz strippings introduce an emittance growth

Laser Assisted Stripping to Recycler (continue)

 Laser beam divergence introduces an adiabatic transition and switches off transition selectivity due to Doppler effect

The quantum-mechanical two-state problem with linearly ramped excitation frequency shows that the excited state is populated with high efficiency

- To suppress the Stark effect the laser polarization is chosen to be normal to the E-field excited by B-field in the beam frame
 - Vertical polarization for vertical B-field and horizontal crossing

Laser Assisted Stripping to Recycler (T. Gorlov, SNS)

Parameters used to build the above pictures

Level	n=2			n=3	
Wavelength, nm	1064	650	532	1064	532
Incidence angle, deg	94.63	116.14	122.90	84.81	117.23
Peak power, P ₀ , MW	5	10	30	20	110
Micropulse energy, mJ	1.0	2.0	6.7	4.5	25.6
Power for 325 MHz, MW	0.23	0.46	1.5	1	6
Micropulse duration, σ_{τ} rms, ps	84	85	90	91	93
x - rms size, r _x , mm	2.5	9.5	2.6	7.1	7.1
y - rms size, r _v , mm	2.0	1.8	2.4	2.0	2.0
x -divergence, α_x , mrad	0.7	0.3	0.3	0.6	0.3
y -divergence, α _v , mrad	1.9	1.1	1.7	1.3	1.4

$$\beta_{x}=40 \text{ m}$$

$$\beta_{x}=10 \text{ m}$$

$$D_{x}=D_{y}=0$$

$$\sigma_{\Delta p/p}=2.5\cdot 10^{-4}$$

$$\epsilon_{x,y \text{ norm}}=0.5$$

$$\text{mm mrad}$$

$$\sigma_{\Delta t(H^{-})}=65 \text{ ps}$$

Laser Assisted Stripping to Recycler (continue)

- Emittance growth is ≤ 0.7 mm mrad (norm. rms)
- Overall stripping inefficiency is ~5%
 - ♦ A spontaneous decay from upper level contributes ~3%
- High Q laser resonator reduces the laser power to acceptable level
 - ◆ Pumping through laser dielectric windows with R=99.98%
 - ♦ Quality factor 1.5·10⁴
 - 10⁵ was demonstrated in the NIST experiments
 - ◆ Cavity length 184.5 cm (4-th subharmonic of 325 MHz)
 - Cavity filling time 30 μs
 - ◆ Average laser power 3 W
 - P_{peak} =230 kW, λ =1.064 μ m, f_{rep} =10 Hz, T_{pulse} =4.2 ms
 - ♦ Such a cavity was never used in high radiation conditions
 - Reliability and stability of operation are unknown

Summary of beam injection to Recycler

- Small emittance of the linac beam improves injection efficiency and quality of the stored beam
- Foil strip injection looks feasible
 - ♦ It has been operating in SNS and proved to be effective
 - Requires multiple pulses from linac for one Recycler fill
 - 10 Hz & 4.2 ms look as a reasonable choice
- Injection through liquid lithium film requires improvements of film quality
 - ♦ It is not obvious that these improvements can be achieved
- Laser assisted stripping looks promising
 - ♦ Requires real experimental verification
 - Collaboration with SNS can help
 - Both single pass and multiple pass injection can be supported

Injection Issues to NF and MC

- Limitations on the linac parameters and beam structure come from
 - ♦ H⁻ beam stripping
 - ◆ Bunch compression

Bunch compression

- Very large beam loading
 - ⇒ Two rings: Accumulator & Buncher
 - o This choice addresses questions
 - how to create the bunching RF field much faster than the synchrotron period
 - Beam loading to bunching RF system during beam storage
- Barrier-bucket RF in Accumulator
 - Operation with zero-slip factor (CERN) is prevented by the transverse-longitudinal instability*

E. Pozdeyev, PR-ST 12, 054202 (2009)

- RF voltage in Buncher cavities is excited to full amplitude at beam injection
 - ♦ Reduces power requirements

^{*}An estimate was done by A. Burov

Bunch compression (continue)

Longitudinal micro-wave instability limits the length of the bunch accumulated in Accumulator

$$\sigma_p^2 L_b \geq \frac{r_p N}{\eta \gamma^3} \xrightarrow{\varepsilon_{\parallel} = \gamma \sigma_p L_b} L_b \geq \frac{r_p N}{\eta \gamma \varepsilon_{\parallel}^2}$$

- \Rightarrow For muon collider parameters the initial bunch length in accumulator ring < C/4 (8 GeV)
- Adiabatic bunch compression looks questionable even at NF intensity
 - + Linearity of bunch rotation easier to achieve for initially short bunch
- All this favors small initial bunch length: $L_b < C/4$
 - ⇒ Increases peak current of the linac in the same proportion

Bunch compression (continue)

Injection and Bunch Compression for NF

Beam energy	8 GeV
Circumference	264 m
Transition energy	3.9 <i>G</i> eV
Acceptance, mm mrad	200
Momentum acceptance	±3%
Linac current, peak/average, mA	20/5
Linac rms momentum spread	<2·10 ⁻⁴
Linac energy sweep	±6·10 ⁻⁴
Filling factor, L _b /C	0.25
Total injection time	1.7 ms
DC beam current in the ring	9.6 A
Number of particles	5.3·10 ¹³
Harmonic number, h	1
$(Z_n/n)_{\text{Space charge}} = (Z_n/n)_{\text{Stability}}$	10 Ω
Repetition rate	60 Hz
Beam power	1 MW

Longitudinal phase space at the end of injection and after compression

4 MW in MC is achieved by combining four bunches at the target at 15 Hz rep. rate

Strip-Injection to NF/MC Accumulator Ring

- Foil-strip injection
 - Impossible for both NF & MC for 1 mA linac current
 - Linac current increase to ~5 mA is required for NF

 Large acceptance greatly reduces the foil heating

Number of injection turns	2000
Beta-functions on the target	10 m
Rms linac size on the target	1 mm
ε _{95% n} for stored beam, mm mrad	1300
Number of injection turns	2000
Number of secondary passages	2.3
per particle	
Foil heating after 1 pulse	~700 K

♦ 4 MW for MC can be done combining beams of 4 rings on the target

Strip-Injection to NF/MC Accumulator Ring (continue)

- Laser assisted strip injection
 - ◆ Looks realistic for both NF & MC
 - ♦ 5% of beam loss (200 kW) represents considerable challenge
 - Laser stripping in the magnetic field can improve efficiency
 - SNS experience with laser stripping will be greatly helpful
 - Can work with both pulsed and continuous linac

Conclusions for Power Limits in Buncher and Accumulator

- At 8 GeV and 15 Hz rep. rate the beam power from a single ring is limited to ~1 MW
 - ♦ 60 Hz makes 4 MW required for neutrino factory
 - ◆ Combination of 4 bunches at the target makes 4 MW at 15
 Hz required for muon collider
- Laser stripping allows to use CW H⁻ beam
- Foil stripping requires pulsed beam with average beam current of ≥ 5 mA and peak beam current ≥ 20 mA

Conclusions

- Making Project X more compatible with Muon Collider -Neutrino Factory needs requires
 - additional investment
 - affects other intensity frontier experiments and
 - complicates the design of the accelerator complex
 - RCS -> to 3-8 GeV pulsed linac
 - ~4 times larger power lost at injection
 - •
- If the MI neutrino program has the highest priority \Rightarrow 2 GeV CW linac and RCS look as the right choice
- Would it be wise step to make the Project X, MC and NF more collinear?