

Recent Results From MINOS and Future Plans For MINOS+

Alexander Radovic
University College London

MINOS

- MINOS or Main
 Injector Neutrino
 Oscillation Search
- Uses Neutrinos from the NuMI beam line
- Has a peak L/E of ~250km/GeV
- ullet Leading measure of $\left|\Delta \mathrm{m}^2_{\mathrm{atm}}
 ight|$

MINOS Physics Goals

- Precise measurement of muon neutrino disappearance
- Direct measurement of muon antineutrino disappearance
- Far detector prediction from near detector is compared to far detector measurement
- Neutrino oscillations deplete rate and distort the energy spectrum

$$P(
u_{\mu}
ightarrow
u_{\mu}) pprox 1 - \sin^2(2 heta_{23}) \sin^2\left(rac{1.27\Delta m_{atm}^2 L}{E}
ight)$$

MINOS Physics Goals

- Precise measurement of muon neutrino disappearance
- Direct measurement of muon antineutrino disappearance
- Muons can also oscillate into electron neutrinos
 - $-\theta_{13}$
 - $-\delta_{cp}$
 - Mass hierarchy

NuMI Neutrino Beam

2.54 cm Fe

MINOS Detector

- Steel/Scintillator Tracking Calorimeter
 - 2.54 cm-thick steel plates

MC Event Topologies

ν_{μ} Charged Current (CC)

$\nu_{\mu} + N \rightarrow \mu^{-} + X$

Radovic (UCL)

Neutral Current (NC)

Fermilab User's Meeting

Muon Neutrino Disappearance

- Five distinct data sets are used to study muon neutrino disappearance:
 - 15.6x10²⁰ POT from NuMI over seven years
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charge current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 15.6x10²⁰ POT from NuMI over seven years
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charge current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 15.6x10²⁰ POT from NuMI over seven years
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charge current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 15.6x10²⁰ POT from NuMI over seven years
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charge current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 15.6x10²⁰ POT from NuMI over seven years
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charge current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions

- Five distinct data sets are used to study muon neutrino disappearance:
 - 15.6x10²⁰ POT from NuMI over seven years
 - 10.7x10²⁰ POT in "neutrino-enhanced" NuMI beam
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions
 - 3.4x10²⁰ POT in "antineutrino-enhanced" NuMI beam
 - Anti-muon neutrino charge current interactions
 - 37.9 kton-years of atmospheric neutrinos
 - Muon neutrino charge current interactions
 - Anti muon neutrino charge current interactions

Combined Beam and Atmospheric Neutrino Disappearance Best Fit

- 2 parameter fit assumes identical neutrino and antineutrino oscillations
- 15 systematics included as nuisance parameters
- Monte Carlo studies showed a well behave fit and significant increase in sensitivity:

Combined Beam and Atmospheric Neutrino Disappearance Best Fit

- 2 parameter fit assumes identical neutrino and antineutrino oscillations
- 15 systematics included as nuisance parameters

Neutrino and Antineutrino Disappearance Best Fits

- 4 parameter fit allows different neutrino and antineutrino oscillations
- Historically some tension with our neutrino best fit
- Difference has decreased dramatically with more data

Neutrino and Antineutrino Disappearance Best Fits

- 4 parameter fit allows different neutrino and antineutrino oscillations
- Historically some tension with our neutrino best fit
- Difference has decreased dramatically with more data

Neutrino and Antineutrino Disappearance Best Fits

$$\sin^2(2\overline{\theta}) = 0.97^{+0.03}_{-0.08}$$

$$\Delta \overline{m}^2 = 2.50^{+0.23}_{-0.25} \times 10^{-3} eV^2$$

$$\sin^2(2\overline{\theta}) > 0.83 (90\%C.L.)$$

$$\sin^2(2\theta) = 0.95^{+0.035}_{-0.036}$$

$$|\Delta m^2| = 2.41^{+0.09}_{-0.10} \times 10^{-3} eV^2$$

$$\sin^2(2\theta) > 0.89 \ (90\%C.L.)$$

Electron Neutrino Appearance

Electron Neutrino Appearance

- MINOS detector granularity makes v_{α} CC identification challenging
- Compare candidate events to a library of MC using "Library Event Matching" (LEM)
- Compute discriminating variables based on truth information from library events that best match the candidate

Electron Neutrino Appearance

With the *neutrino-enhanced* beam in Signal Enhanced Region:

- If $\theta_{13} = 0$: 128.6 BG Events
- If $\sin^2(2\theta_{13}) = 0.1$: +32.5 Events
- Total Prediction: 161 Events
- Observed: 152 Events

With the *antineutrino-enhanced* beam in Signal Enhanced Region:

- If $\theta_{13} = 0$: 17.5 BG Events
- If $\sin^2(2\theta_{13}) = 0.1$: +3.7 Events
- Total Prediction: 21.2 Events
- Observed: 20 Events

Combined Electron Neutrino Appearance

Cannot distinguish between ν_e and anti- ν_e events, so we perform a combined analysis:

At
$$\delta_{CP} = 0$$
 and $\theta_{23} < \pi/4$,

Assuming normal hierarchy:

$$2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.051^{+0.038}_{-0.030}$$
 $0.01 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.12$ (90% C.L.)

Assuming inverted hierarchy:

$$2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.093^{+0.054}_{-0.049}$$
 $0.03 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.18$ (90% C.L.)

Combined Electron Neutrino Appearance

Cannot distinguish between v_e and anti- v_e events, so we perform a combined analysis: Ξ

At
$$\delta_{CP} = 0$$
 and $\theta_{23} < \pi/4$,

Assuming normal hierarchy:

$$2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.051^{+0.038}_{-0.030}$$

 $0.01 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.12$ (90% C.L.)

• Assuming inverted hierarchy:

$$2\sin^2(2\theta_{13})\sin^2(\theta_{23}) = 0.093^{+0.054}_{-0.049}$$
 $0.03 < 2\sin^2(2\theta_{13})\sin^2(\theta_{23}) < 0.18$ (90% C.L.)

Fermilab User's Meeting

MINOS+

MINOS+

- Next generation using the MINOS detectors
- Employs on-axis NuMI beam
- 3 years of running in 4-10 GeV region
- Significant reduction in statistical uncertainty
- Collect ~3000 ν_{μ} CC events/year
- Physics goals:
 - Precision measurements of atmospheric oscillations
 - Probes higher energy region
 - Search for sterile neutrinos
 - Search for NSI

Sterile Neutrino Search

- Use both neutral-current (NC) and charged-current (CC) neutrino interactions.
- NC cross-sections are insensitive to standard neutrino mixing
- Energy dependant deficit would point to a sterile neutrino
- CC disappearance can also be used to probe sterile neutrino mixing.
- Sensitive if oscillations into sterile neutrinos are driven by a large masssquare difference Δm²₄₁ ~ 10⁻²-10 eV²

Sterile Neutrino Search

- Use both neutral-current (NC) and charged-current (CC) neutrino interactions.
- NC cross-sections are insensitive to standard neutrino mixing
- Energy dependant deficit would point to a sterile neutrino
- CC disappearance can also be used to probe sterile neutrino mixing.
- Sensitive if oscillations into sterile neutrinos are driven by a large masssquare difference Δm²₄₁ ~ 10⁻²-10 eV²

Summary

MINOS has completed a combined analysis of:

- 10.7x10²⁰ POT to measure muon neutrino disappearance
- 3.4x10²⁰ POT to measure muon antineutrino disappearance
- 37.9 kton-years of atmospheric data

MINOS has completed a combined analysis of:

- 10.6x10²⁰ POT to measure electron neutrino appearance
- 3.3x10²⁰ POT to measure electron antineutrino appearance

With many exciting new results on the horizon, including:

- Muon disappearance results in a three-flavor scenario
- Results of combined muon/electron neutrino fits
- MINOS and MINOS+ work to verify 3-(only) flavour scenario

Q&A

Q&A

Combined Beam and Atmospheric Neutrino Disappearance Best Fit

- 2 parameter fit assumes identical neutrino and antineutrino oscillations
- 15 systematics included as nuisance parameters
- Oscillations fit the data well: 19% of pseudo experiments have worse χ2

Time of Flight

- The time of the neutrino interaction in the ND (FD) tND (tFD) is recorded on a local atomic clock, corrected using gps measurements
- We compare these times to the time of the resistive current wall monitor t0 and correct for known timing delays

Systematic uncertainty	Value
Inertial survey at FD	2.3 ns
Relative ND-FD latency	1.0 ns
FD TWTT between surface and underground	0.6 ns
GPS time transfer accuracy	0.5 ns
TOTAL	2.6 ns

Measure time of flight as t2 - t1

- Correct for known delays
- Neutrino arrival time fitted to proton bunch structure as measured by current wall monitor
- Time from monitor to ND and monitor to FD subtracted to form ND-FD TOF
- Baseline ND FD = 2,449,316.3 ns
- Time of flight ND FD
 = 2,453,935.0 ± 0.1 4621.1
 = 2,449,313.9 ± 0.1 ns
- $(v/c-1)=(1.0\pm1.1)\times10^{-6}$

MINOS: Selection I

- The actual analysis selection can be broken down into two main parts.
- The first is the selection of muon like events by using a kNN (k nearest neighbour) algorithm. This takes advantage of the way muon tracks deposit energy, specifically:
 - Track Length.
 - Mean signal in track planes.
 - Transverse track profile.
 - Signal fluctuation in the track.

MINOS: Selection II

- The next is charge sign selection, judged by looking at the q/p of the track.
- Particularly important in the anti-neutrino analysis which aims to perform its fit with only anti-neutrinos.
- Less important for the 2
 parameter analysis which
 includes positive sign CC
 events in its sample.

Near to Far Extrapolation

Beam Matrix

- To achieve this we use the a beam matrix
- This matrix
 describes the energy
 dependant differences in
 the neutrino flux seen at the
 near and far detector.
- π/K/µ producing events of a given energy in the near detector produce a range of

energies in the far detector, yielding the energy smearing seen.

Selected Disappearance Events

	Simulation		Events
Data Set	No osc.	With osc.	Observed
$\overline{\nu_{\mu}}$ from ν_{μ} beam	3201	2543	2579
$\overline{\nu}_{\mu}$ from ν_{μ} beam	363	324	312
Non-fiducial μ from ν_{μ} beam	3197	2862	2911
$\overline{\nu}_{\mu}$ from $\overline{\nu}_{\mu}$ beam	313	227	226
Atm. contained-vertex $\nu_{\mu} + \overline{\nu}_{\mu}$	1100	881	905
Atm. non-fiducial $\mu^- + \mu^+$	570	467	466
Atm. showers	727	724	701

Systematics & Statistics

Clearly we are still very much a statistically limited analysis:

Neutrino FHC Beam Data Spectrum and Fit

Expected Events: 3564 (Null Oscillations)

Observed: 2895

Best Fit:

$$\left|\Delta m^2\right| = 2.41^{+0.11}_{-0.10} \times 10^{-3} eV^2 \sin^2(2\theta) = 0.94^{+0.04}_{-0.05}$$

Library Event Matching (LEM)

Find best matches from a library of MC Events

Judge how signal-like an event is based on those best matches.

