

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

MEBT Status and Commissioning Plan

A. Shemyakin
PIP-II Machine Advisory Committee Meeting
15-17 March 2016

Outline

- MEBT functions and challenges
- MEBT elements and their status
 - Magnets, bunching cavities, scrapers, chopping system
 - Diagnostics and RF will be covered in separate talks
- MEBT stages
- MEBT at PXIE vs PIP-II MEBT

MEBT functions

2.1 MeV; 5/10 mA (nom./max) CW; emittance 0.23/0.31 µm rms n (transv./long.)

- Optical matching from RFQ and to HWR
- Chopping
 - Any bunch from initial CW train can be removed
- Scraping
- Transition from HV to particle-free, UHV part upstream of HWR
- Measuring beam parameters; MPS

PIP-II MEBT challenges to address

- The main challenges are related to the goal of bunch-bybunch selection
- Beam chopping
 - Fast kickers; beam loss and extinction
 - High-power beam absorber in vicinity of passing bunches
- Vacuum management near SRF
 - Absorber gas load, dust, accident scenarios
- Measuring beam optics; stability of operation
 - Passing the beam through 3 tight apertures (kickers and differential pumping insert)
 - Interaction with the scraping system
 - Emittance growth
- All will be studied at PXIE

PXIE MEBT configuration

3σ envelopes of passing bunches. 2.1 MeV, 5 mA. TraceWin.

A. Saini.

- Two doublets and 7 triplets; three bunching cavities
 - No dramatic changes in the optical design since 2011
- Chopping system: two kickers and absorber
- Smaller beam size after absorber for differential pumping

Focusing elements

- Magnets: 25 quadrupoles, 9 x 2 dipole correctors + spares
 - Produced by BARC, India and delivered in batches
 - First two doublets with dipole correctors are installed on girder
 - Considered prototypes, but quality within specs
 - Four triplets are coming in August 2016
 - The rest in FY17
 - Power supplies are inherited from Ecool
- Bunching cavities: procured at HiTech
 - A prototype was fully tested and is used in MEBT-1
 - 3 production cavities have been ordered (May'16 delivery)
 - bunching cavity amplifiers are being commissioned (see R. Pasquinelli's report)

Two doublets and bunching cavity installed on a girder in the PXIE cave

MEBT scraping system

- 4 scraper sets, 4 blades in each set. Will be used for
 - Diagnostic
 - Beam size and profile measurements; beam halo
 - Part of active protection system
 - Increased scraper current generates alarm signal for MPS
 - Scraping (the main function)
 - Scrape the beam halo or intercept the beam in case of incidents
- One set was successfully tested at LEBT (200W/set rating)

3/15/2016

Nominal scraping scenario

Beam losses for passing bunches. Nominal beam (5 mA, $\epsilon_{tr/z}$ =0.21/0.28 μ m). A. Saini.

Chopping system

- Two travelling-wave kickers working in synch and absorber
 - Two kicker versions, 50 Ohm and 200 Ohm

Passing bunch. -250V, +250V on upper plates.

Removed bunch. +250V, -250V on upper plates. Case with 0.05% of beam leaking to scrapers is shown.

3σ envelopes. 2.1 MeV, 5 mA. A. Saini. Bipolar kicker version.

Chopping system - development

- Absorber: 21 kW CW; 0.5m; 29 mrad grazing angle
 - Separate TZM plates pressed against a water-cooled aluminum base; ¼ prototype tested
 - No new development for the absorber since last P2MAC
- Kickers: 2 versions distinguished by characteristic impedance
 - Main version 50 Ohm; bipolar kick; AC-coupled
 - Driver: linear amplifier with pre-distortion; commercially available
 - Second version 200 Ohm
 - Higher impedance allows considering a fast switch as a driver
 - Potentially simpler and cheaper solution; DC-coupled

50 Ohm kicker

Features

- Bipolar signal; bunches to be removed or passed are kicked in opposite directions
- Plates connected in vacuum with 50 Ohm cables

- One plate was successfully tested in vacuum
 - Full-power and RF measurements
- Final prototype is fully assembled
 - Will be power-tested at MEBT

Half of the kicker (one plate) assembled. D.Sun

Kicker under testing. D.Sun, D. Peterson

3D model. A.Chen, M. Jones

200 Ohm kicker

- TW structure is a helix with welded plates
- A vacuum-compatible helix was tested
 - Power testing in vacuum is successful
 - The phase velocity was found off by 5%; redesigned
- A complete kicker with modified helixes is being assembled
 - Planned to be fully tested before end of summer 2016

Kicker prepared for power testing in vacuum.

A.Chen, G.Saewert

- Each helix will be driven by a switch
 - From 0- to- +500 V and from 0- to- -500V, correspondingly
 - Switch scheme: 3-4 FETs in series triggered simultaneously

200 Ohm Helix Driver status (G. Saewert)

- Evaluation results of 3- GaN FET "-500V" switch
 - Load used: 185 Ohm
 - 3.0 ns turn-on, 4.0 ns turn-off (5-95%)
 - Operated at 630 V
 - Timing match of 3 boards is <0.2 ns
 - Flattop pulse width adjustable range:2.5 ns to infinity
 - Tested 9 MHz CW, and >40 MHz bursts
 - Better cooling is required for higher representation
- Results of thermal modelling of a scheme with water cooling
 - 4 FETs mounted on BeO ceramic
 - ~20 W per FET (extrapolated from data)
 - Junction temperature: ~120 °C (acceptable)

Kickers simulations (M. Hassan)

- Both kickers were simulated with time domain solver of CST
 - With all mechanical details and realistic pulse shapes
- Angles differ from the model of parallel plates by <10%

Simulated geometries and propagated signals for two kickers

Vacuum components

- HV in most of MEBT and UHV, particle-free in last ~3m
 - MEBT vacuum concept did not change since 2012
 PXIE_MEBT Residual Gas Pressure Profile

- All vacuum equipment was identified and most purchased
- Design of the differential pumping section begins
- From PXIE experience, need to decide for PIP-II
 - Length of particle-free region
 - Fast acting valve system area

MEBT commissioning plan

- MEBT: 3 intermediate steps
 - determined by magnet delivery schedule
 - MEBT-1 2 doublets, 1 bunching cavity (present configuration)
 - To commission the RFQ beam; hopefully 10 kW CW
 - MEBT-2 + 4 triplets, +1 bunching cavity
 - Install in Fall 2016, run until Spring 2017
 - MEBT-3 + 3 triplets, +1 bunching cavity
 - Install in Spring 2017, run until shutdown to install SRF
 - Full length, prototype elements
- The final MEBT (install in FY18)
 - Particle-free vacuum chamber in front of HWR
 - Final chopping system (final kickers, drivers, and absorber)
 - Bunch-by-bunch selection

MEBT-1: 2 doublets, 1 bunching cavity

Final MEBT-1 configuration (CW - capable)

- systems
 - MPS, LLRF, Instrumentation
- Beam optics
 - Bunching cavity, magnets

A. Shemyakin 2016 P2MAC

MEBT-2: 2 doublets, 4 triplets, 2 bunching cavities

- The main goal is to test kickers
 - Install both prototypes
 - Test: kickers survival and angle to the beam
 - 50 Ohm: two 81.25 MHz CW drivers
 - 200 Ohm: two 500V switch prototypes
 - Proceed with fabrication of final kickers
- Optics; tests of laser wire and extinction monitor (RWCM)
 - Could be 1-3 versions differing by placement of diagnostics

MEBT-3: 2 doublets, 7 triplets, 3 bunching cavities

- All magnets, cavities, and scrapers are in final locations
 - The kickers are still 50 Ohm and 200 Ohm prototypes
 - 5kW absorber prototype instead of full absorber
- The last ~2m are "cleanable" but assembled not particle-free
- Main goals
 - Prepare beam for injection into HWR
 - Optics; UHV sections and differential pumping
 - Finalize measurements started in previous versions

3/15/2016

PXIE MEBT vs PIP-II MEBT

- While all PXIE MEBT components are designed to PIP-II specs, there may be differences
 - Plan to have the ion sources accessible during linac operation
 - Need a radiation wall (similar to SNS) in MEBT; requires one more section
 - May need a longer particle-free region in MEBT
 - More detailed analysis of risks may require a longer distance from the MEBT chopper absorber to SRF to provide protection by the fast acting valve
 - Longer MEBT would require additional triplets and may need an additional bunching cavity

