

Physics

- NOvA:
- NuMI: Neutrinos at the Main Injector $\left(v_{\mu}\right)$
- Off-Axis: monoenergetic beam (2 GeV)
- v_{e} Appearance

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=f\left(\theta_{13}, \theta_{23}, \delta_{\mathrm{CP}}, \text { mass hierarchy }, \ldots\right)
$$

Physics

- NOvA:
- NuMI: Neutrinos at the Main Injector $\left(v_{\mu}\right)$
- Off-Axis: monoenergetic beam (2 GeV)
- v_{e} Appearance

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=f\left(\theta_{13}, \theta_{23}, \delta_{\mathrm{CP}}, \text { mass hierarchy }, \ldots\right)
$$

- Physics Goals:
- measure $\theta_{13}, \theta_{23}, \Delta \mathrm{~m}_{32}^{2}$
- resolve θ_{23} octant
- measure δ_{CP}

CP-violating phase angle

Physics

- NOvA:
- NuMI: Neutrinos at the Main Injector $\left(v_{\mu}\right)$
- Off-Axis: monoenergetic beam (2 GeV)
- v_{e} Appearance
$P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=f\left(\theta_{13}, \theta_{23}, \delta_{\mathrm{CP}}\right.$, mass hierarchy,$\left.\ldots\right)$
- Physics Goals:
- measure $\theta_{13}, \theta_{23}, \Delta \mathrm{~m}_{32}^{2}$
- resolve θ_{23} octant
- measure δ_{CP} CP-violating phase angle
- resolve mass hierarchy

NuMI Beamline

- NuMI: Neutrinos at the Main Injector
- Beam delivered to several neutrino experiments since 2005:
- MINOS, MINERvA, and ArgoNeut
o Beam upgrade work since May 2012:
increase beam power from 300 kW to 700 kW
upgrade graphite target and magnetic focusing homs
Beam returns at the end of this month (June 2013)!

- NuMI: Neutrinos at the Main Injector
- Beam delivered to several neutrino experiments since 2005:
- MINOS, MINERvA, and ArgoNeut
- Beam upgrade work since May 2012:
- increase beam power from 300 kW to 700 kW
- upgrade graphite target and magnetic focusing horns
- Beam returns at the end of this month (June 2013)!

NO vA

- 105 m underground
- Cavern Completed!
- Received Beneficial Occupancy in May.
- Assembly starts this month (June).
- Outfitting during summer and fall.
- Start data taking with half of the detector in December.

We can achieve a narrowly distributed neutrino energy by nlacing the far detector 14.6 mrad off the beam axis. This is also the $v_{\mu} \rightarrow v_{\mathrm{e}}$ oscillation peak.

Baseline ($\mathrm{L}=810 \mathrm{~km}$)
The neutrino beam
travels from here (Fermilab) to Ash River, MN through the earth's crust.

Longest baseline

 experiment!
Energy ($\mathbf{E}_{\mathbf{v}}=2 \mathbf{~ G e V}$)

We can achieve a narrowly distributed neutrino energy by placing the far detector 14.6 mrad off the beam axis. This is also the $v_{\mu} \rightarrow v_{\mathrm{e}}$ oscillation peak.

DETEGTOR

- We want to detect weakly-interacting electron neutrinos $\left(v_{e}\right)$.
- This requires:
- large detector mass
- good electromagnetic (EM) shower resolution

Detector

- We want to detect weakly-interacting electron neutrinos $\left(v_{\mathrm{e}}\right)$.
- This requires:
- large detector mass
- good electromagnetic (EM) shower resolution

Detector

- We want to detect weakly-interacting electron neutrinos $\left(v_{\mathrm{e}}\right)$.
- This requires:
- large detector mass
- good electromagnetic (EM) shower resolution

Detector

- We want to detect weakly-interacting electron neutrinos $\left(v_{\mathrm{e}}\right)$.
- This requires:
- large detector mass
- good electromagnetic (EM) shower resolution

"Fully" Active Detector

- PVC extrusions (long tubes)
- filled with liquid scintillator
- provide a radiation length of $\sim 40 \mathrm{~cm}$.
- 2 GeV muon travels 10 m !
- Each extrusion contains one loop of wavelength-shifting fiber.

DeTEctor

"Fully" Active Detector

- PVC extrusions (long tubes)
- filled with liquid scintillator
- provide a radiation length of $\sim 40 \mathrm{~cm}$.
- 2 GeV muon travels 10 m !
- Each extrusion contains one loop of wavelength-shifting fiber.
- 32 channels are read out by one avalanche photo-diode (APD).

32 Channels

FAR DETEGTOR (14 KILOTONS)

Far Detector

Simulated Event Signatures

ν_{μ} charged-current
\checkmark long muon track \checkmark short proton track

neutral-current with π^{0} final state \checkmark multiple EM showers \checkmark gaps near vertex

First Far Detector Cosmic Ray Data

v_{e} SELECTION

- 3 years of running in neutrino mode:

- We designed a suite of particle ID techniques:

ANN: Likelihood ratios for particle hypotheses. LEM: Matching to MC library events.
BDT: Boosted decision tree on simple reconstructed quantities.

- The plots on the right show promising v_{e} signal/background separation.

v_{e} SELECTION

- 3 years of running in neutrino mode:

- We designed a suite of particle ID
 techniques:
- ANN: Likelihood ratios for particle hypotheses.
- LEM: Matching to MC library events.
- BDT: Boosted decision tree on simple reconstructed quantities.
- The plots on the right show promising v_{e} signal/background separation.

Extracting Nature's Parameters

$$
\left.\begin{array}{l}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \\
P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)
\end{array}\right) \sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\theta_{23}\right) f^{ \pm}\left(\underline{\underline{L, E}}, \Delta m_{31}^{2}\right)
$$

\pm neutrino mode
\pm anti-neutrino mode

- The NOvA baseline $(\mathrm{L}=810 \mathrm{~km})$ and neutrino beam energy $(\mathrm{E}=2 \mathrm{GeV})$ place our detector at the first $v_{\mu} \rightarrow v_{\mathrm{e}}$ oscillation peak.
$\sin ^{2} 2 \theta_{13}$: the leading term in this equation has already been measured and it is large!
we can glean information about the θ_{23} octant from the leading term.
δ_{cp} : using the measured value of θ_{13}, we can determine the CP -violating phase angle. mass hierarchy: depending on the sign of $\Delta \mathrm{m}^{2}{ }_{31} \sim \Delta \mathrm{~m}^{2}{ }_{32}$, the oscillation probability is either enhanced or suppressed. This difference can be determined by comparing neutrino running with anti-neutrino running.

Extracting Nature's Parameters

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \\
& P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)
\end{aligned} \approx \underline{\sin ^{2}\left(2 \theta_{13}\right)} \sin ^{2}\left(\theta_{23}\right) f^{ \pm}\left(\underline{L, E,} \Delta m_{31}^{2}\right)
$$

\pm neutrino mode
\pm anti-neutrino mode

- The NOvA baseline $(\mathrm{L}=810 \mathrm{~km})$ and neutrino beam energy $(\mathrm{E}=2 \mathrm{GeV})$ place our detector at the first $v_{\mu} \rightarrow v_{\mathrm{e}}$ oscillation peak.
- $\boldsymbol{\operatorname { s i n }}^{\mathbf{2}} \boldsymbol{2 \theta}_{13}$: the leading term in this equation has already been measured and it is large!
δ_{CP} : using the measured value of θ_{13}, we can determine the CP -violating phase angle. mass hierarchy: denending on the sign of $\Lambda \mathrm{m}^{2}{ }_{31} \sim \Delta \mathrm{~m}^{2}{ }_{32}$, the oscillation probability is either enhanced or suppressed. This difference can be determined by comparing neutrino running with anti-neutrino running.

Extracting Nature's Parameters

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \\
& P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)
\end{aligned} \approx \underline{\sin ^{2}\left(2 \theta_{13}\right)} \underline{\sin ^{2}\left(\theta_{23}\right)} f^{ \pm}\left(\underline{L, E,} \Delta m_{31}^{2}\right)
$$

\pm neutrino mode
\pm anti-neutrino mode

- The NOvA baseline $(\mathrm{L}=810 \mathrm{~km})$ and neutrino beam energy $(\mathrm{E}=2 \mathrm{GeV})$ place our detector at the first $v_{\mu} \rightarrow v_{\mathrm{e}}$ oscillation peak.
- $\boldsymbol{\operatorname { s i n }}^{2} \mathbf{2} \theta_{13}$: the leading term in this equation has already been measured and it is large!
- $\sin ^{2} \theta_{23}$: we can glean information about the θ_{23} octant from the leading term.
\qquad either enhanced or suppressed. This difference can be determined by comparing neutrino running with anti-neutrino running.

Extracting Nature's Parameters

$$
\left.\begin{array}{l}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \\
P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)
\end{array}\right) \underline{\sin ^{2}\left(2 \theta_{13}\right)} \sin ^{2}\left(\theta_{23}\right) f^{ \pm}\left(\underline{L, E,}, \Delta m_{31}^{2}\right)
$$

\pm neutrino mode
\pm anti-neutrino mode

$$
+\left\{\underline{\left\{\cos \delta_{\mathrm{CP}}\right.} \cos \frac{\Delta m_{31}^{2} L}{4 E} \mp \underline{\sin \delta_{\mathrm{CP}}} \sin \frac{\Delta m_{31}^{2} L}{4 E}\right\}
$$

- The NOvA baseline $(\mathrm{L}=810 \mathrm{~km})$ and neutrino beam energy $(\mathrm{E}=2 \mathrm{GeV})$ place our detector at the first $v_{\mu} \rightarrow v_{\mathrm{e}}$ oscillation peak.
- $\boldsymbol{\operatorname { s i n }}^{2} \mathbf{2} \theta_{13}$: the leading term in this equation has already been measured and it is large!
- $\sin ^{2} \theta_{23}$: we can glean information about the θ_{23} octant from the leading term.
- $\boldsymbol{\delta}_{\mathrm{CP}}$: using the measured value of θ_{13}, we can determine the CP -violating phase angle.
either enhanced or suppressed. This difference can be determined by comparing
neutrino running with anti-neutrino running.

Extracting Nature's Parameters

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \approx \sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\theta_{23}\right) f^{ \pm}\left(\underline{L}, E, \Delta m_{31}^{2}\right) \\
& P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)
\end{aligned}
$$

\pm neutrino mode
\pm anti-neutrino mode

$$
\times 2 \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sin \left(\theta_{13}\right) g^{ \pm}\left(L, E, \Delta m_{31}^{2}, \theta_{12}, \theta_{23}\right)
$$

- The NOvA baseline $(\mathrm{L}=810 \mathrm{~km})$ and neutrino beam energy $(\mathrm{E}=2 \mathrm{GeV})$ place our detector at the first $v_{\mu} \rightarrow v_{\mathrm{e}}$ oscillation peak.
- $\boldsymbol{\operatorname { s i n }}^{2} \mathbf{2} \theta_{13}$: the leading term in this equation has already been measured and it is large!
- $\sin ^{2} \theta_{23}$: we can glean information about the θ_{23} octant from the leading term.
- $\boldsymbol{\delta}_{\mathrm{CP}}$: using the measured value of θ_{13}, we can determine the CP -violating phase angle.
- mass hierarchy: depending on the sign of $\Delta \mathrm{m}^{2}{ }_{31} \sim \Delta \mathrm{~m}^{2}{ }_{32}$, the oscillation probability is either enhanced or suppressed. This difference can be determined by comparing neutrino running with anti-neutrino running.

Physics Reach (Bi-probability Plots)

- Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
Assume that NOvA would measure where the orange arrows point (best case
scenario) The bold and dotted lines show the 1 and 2σ contours that we could achieve with:

3 years neutrino
running plus 3 years anti-neutrino running

Physics Reach (Bi-probability Plots)

- Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
Assume that NOvA would measure where the orange arrows point (best case
scenario) The bold and dotted lines show the 1 and 2σ contours that we could achieve with 3 years neutrino running plus 3 years anti-neutrino running

Physics Reach (Bi-probability Plots)

Physics Reach (Bi-probability Plots)

- Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
Assume that NOvA would measure where the orange arrows point (best case
scenario) The bold and dotted lines show the 1 and 2σ contours that we could achieve with:

3 years neutrino
running plus 3 years
anti-neutrino running

Physics Reach (Bi-probability Plots)

- Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
Assume that NOvA would measure where the orange arrows point (best case
scenario). The bold and dotted lines show the 1 and 2σ contours that we could achieve with:

3 years neutrino
running plus 3 years anti-neutrino running

Physics Reach (Bi-probability Plots)

- Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
Assume that NOvA would measure where the orange arrows point (best case
scenario).
The bold and dotted lines show the 1 and 2σ contours that we could achieve with:

3 years neutrino
running plus 3 years
anti-neutrino running

Physics Reach (Bi-Probability Plots)

- Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
The bold and dotted lines show the 1 and 2σ contours that we could achieve with: 3 years neutrino running plus 3 years anti-neutrino running

Physics Reach (Bi-probability Plots)

- Using the previous equations, we can calculate the neutrino and anti-neutrino appearance probabilities.
- Assume that NOvA would measure where the orange arrows point (best case scenario).
- The bold and dotted lines show the 1 and 2σ contours that we could achieve with:
- 3 years neutrino running plus 3 years anti-neutrino running

Mass Hierarchy and $\delta_{\text {CP }}$ Sensitivity

- Given the bi-probability plots from the previous slides and using latest analysis framework, we can determine how sensitive we will be to resolve the:
- Mass Hierarchy

Results from full simulation, reconstruction, and selection!

Mass Hierarchy and $\delta_{\text {CP }}$ Sensitivity

- Given the bi-probability plots from the previous slides and using latest analysis framework, we can determine how sensitive we will be to resolve the:
- Mass Hierarchy (even better with T2K)

Results from full simulation, reconstruction, and selection!

Mass Hierarchy and $\delta_{\text {CP }}$ Sensitivity

- Given the bi-probability plots from the previous slides and using latest analysis framework, we can determine how sensitive we will be to resolve the:
- Mass Hierarchy (even better with T2K)

Results from full simulation, reconstruction, and selection!

- CP-violating phase angle (δ_{CP})

NOvA CPV determination, $3+3 \mathrm{yr}$

First glimpse at (δ_{CP})!

Physics Reach (θ_{23} Octant)

- We know that $\sin ^{2}\left(2 \theta_{23}\right)$ is close to unity, but what octant does θ_{23} fall in?
- $\theta_{23}>45^{\circ}$
- $\theta_{23}<45^{\circ}$
- The probability ellipses are given for both scenarios separated by the green dotted line.

θ_{23} Octant Sensitivity

- Given the bi-probability plots, we can calculate how sensitive we will be to the θ_{23} octant:
- $\theta_{23}>45^{\circ}$ (upper octant)
- $\theta_{23}<45^{\circ}$ (lower octant)

Precision Measurements

- Measure $\theta_{23}, \Delta \mathrm{~m}^{2}{ }_{32}$ to the few percent level
\circ using v_{μ} disappearance: $P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)$

Precision Measurements

- Measure $\theta_{23}, \Delta \mathrm{~m}_{32}^{2}$ to the few percent level
- using v_{μ} disappearance: $P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)$

Exotic SEARCHES

- Because the NOvA detector is so large and highly-segmented, it lends itself to exotic searches:
- Magnetic Monopoles
- would be highly ionizing or slow moving particles.
- The NOvA detector is favorable because of its large surface area and its surface location.
- The plot on the right shows the monopole phase space we have access to.

\qquad

Exotic SEARCHES

- Because the NOvA detector is so large and highly-segmented, it lends itself to exotic searches:
- Magnetic Monopoles
- would be highly ionizing or slow moving particles.
- The NOvA detector is favorable because of its large surface area and its surface location.
- The plot on the right shows the monopole phase space we have access to.
- Supernovae
- have a large neutrino shockwave.
- WIMP
- highly energetic neutrinos coming from the sun
- Using the Near Detector:
- Neutrino Magnetic Moment
- Dark Sector

90\% C.L. Upper Limits on Magnetic Monopole Flux ($\mathbf{c m}^{-2} \mathbf{s}^{-1} \mathbf{s r}^{-1}$)

SUMMARY

- Far Detector construction half way complete with first kiloton fully instrumented and construction progressing quickly.
- NuMI beam return is imminent!

SUMMARY

THANKS TO THE NOVA PROJECVI!

- Far Detector construction half way complete with first kiloton fully instrumented and construction progressing quickly.
- NuMI beam return is imminent!
> hierarchy and the θ_{23} octant, and have the first glimpse at δ_{CP} We will use our detector as an eye to the universe and are excited about what we might learn. Please see the 5 NOvA posters this evening for more detail. We do not only have a massive detector, but also a massive collahoration of dedicated neonle!

180+ scientists and engineers from 35 institutions from 7 countries

SUMMARY

THANKS TO THE NOVA PROJJCCT!

- Far Detector construction half way complete with first kiloton fully instrumented and construction progressing quickly.
- NuMI beam return is imminent!
- Our analysis framework is ready to try to pin down the mass hierarchy and the θ_{23} octant, and have the first glimpse at δ_{CP}.
- We will use our detector as an eye to the universe and are excited about what we might learn.
- Please see the $5 \mathrm{NO} v \mathrm{~A}$ posters this evening for more detail.
collaboration of dedicated people! 180+ scientists and engineers
from 35 institutions from 7 countries

SUMMARY

THANKS TO THE NOVA PROJJCCT!

- Far Detector construction half way complete with first kiloton fully instrumented and construction progressing quickly.
- NuMI beam return is imminent!
- Our analysis framework is ready to try to pin down the mass hierarchy and the θ_{23} octant, and have the first glimpse at δ_{CP}.
- We will use our detector as an eye to the universe and are excited about what we might learn.
- Please see the 5 NOvA posters this evening for more detail.
- We do not only have a massive detector, but also a massive collaboration of dedicated people!

180+ scientists and engineers from 35 institutions from 7 countries

