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= f(✓13, ✓23, �CP,mass hierarchy, ...)

¢  NOνA: 
�  NuMI: Neutrinos at the Main Injector (νµ) 

�  Off-Axis: monoenergetic beam (2 GeV) 
�  νe Appearance 

¢  Physics Goals: 
�  measure θ13, θ23, Δm2

32 
�  resolve θ23 octant 
�  measure δCP 

CP-violating phase angle 
�  resolve mass hierarchy 
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p 

Target Magnet Near Detector 

14.6 mrad 

νµ 

νµ/νe/ντ 

Far Detector 

π+
 

π+ → µ+νµ 

Decay 

NUMI BEAMLINE

¢  NuMI: Neutrinos at the Main Injector 
¢  Beam delivered to several neutrino experiments since 2005: 

�  MINOS, MINERνA, and ArgoNeut 
¢  Beam upgrade work since May 2012: 

�  increase beam power from 300 kW to 700 kW 
�  upgrade graphite target and magnetic focusing horns 

¢  Beam returns at the end of this month (June 2013)! 

Main Injector 

NuMI Beam 

Fermilab 
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NEAR DETECTOR STATUS
¢  105m underground 
¢  Cavern Completed! 
¢  Received Beneficial 

Occupancy in May. 
¢  Assembly starts this 

month (June). 
¢  Outfitting during 

summer and fall. 
¢  Start data taking with 

half of the detector in 
December. 

Near Detector 
Cavern 

MINOS Tunnel 
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THE BEAM Baseline (L = 810 km) 
The neutrino beam  
travels from here (Fermilab) 
to Ash River, MN through 
the earth’s crust. 

Energy (Eν = 2 GeV) 
We can achieve a narrowly distributed 
neutrino energy by placing the far 
detector 14.6 mrad off the beam axis. 
This is also the νµ à νe oscillation peak. 

Ash River 

Fermilab 

Longest baseline  
experiment! 
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15 m 

4 cm 

1 Channel 

DETECTOR

 “Fully” Active Detector 
¢  PVC extrusions (long tubes) 
¢  filled with liquid scintillator 
¢  provide a radiation length  

of ~ 40 cm. 
¢  2 GeV muon travels 10 m! 
¢  Each extrusion contains one 

loop of wavelength-shifting 
fiber. 

charged-current 
interaction 

¢  We want to detect  
weakly-interacting  
electron neutrinos (νe). 

¢  This requires: 
�  large detector mass 
�  good electromagnetic 

(EM) shower resolution 
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DETECTOR

 “Fully” Active Detector 
¢  PVC extrusions (long tubes) 
¢  filled with liquid scintillator 
¢  provide a radiation length  

of ~ 40 cm. 
¢  2 GeV muon travels 10 m! 
¢  Each extrusion contains one 

loop of wavelength-shifting 
fiber. 

¢  32 channels are read out by one 
avalanche photo-diode (APD). 

15 m ×32 

Avalanche  
Photo-Diode 

32 Channels 

32 channels à 1 module 
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DETECTOR

15 m 

     384 Channels (plane) 
12,288 Channels (block) 

×12 

12 modules  à 1 (x- or y-) plane 
32 planes  à 1 block 

15 m 

First Block Placed: 
September 2012 

Martin Frank University of Virginia 15 
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NOvA Far Detector Assembly Progress The Intensity Frontier 

M
ay#21,#2013#
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arch##22,#2013#

Block Installed 

Block Filled 

Status Date: 10JUN13 

M
arch#7,#2012#

April#12,#2013#

April##25,#2013#

M
ay#13,#2013#

Block 15 Assembly Progress 
31% Complete 

Block 8 Fill Progress 
72% Complete 

M
ay#24,#2013#
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Block Instrumented 

Instrumentation Progress 
Di-Block 2: 25% Complete 
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M
arch#20,#2013#

April#4,#2013#

April##18,#2013#

M
ay#6,#2013#

M
ay#20,#2013#

June#3,#2013#

14 kilotons = 28 NOvA Blocks 
15 blocks of PVC modules are assembled and installed in place 

8.72 blocks are filled with liquid scintillator 

2.5 blocks are outfitted with electronics 

FAR DETECTOR (14 KILOTONS)

344,064 Channels 
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SIMULATED EVENT SIGNATURES

νµ charged-current 
ü  long muon track 
ü  short proton track 

 

νe charged-current 
ü  single EM shower 
 

 
neutral-current 
with π0 final state 
ü  multiple EM 

showers 
ü  gaps near vertex 
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FIRST FAR DETECTOR COSMIC RAY DATA

first instrumented kiloton 

reconstructed muon track 
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Current Backgrounds 

νe SELECTION
¢  3 years of running in neutrino mode: PID

! Several νe PIDs under development
ANN Likelihood ratios for particle hypotheses
LEM Matching to Monte Carlo library events
BDT MVA on simple reconstructed quantities

! Good separation of νe signal from
backgrounds

! See poster by Himansu Sahoo (session K2)

! Approximate expected event counts

18 × 1020 POT ν ν̄
Neutral current 19 10

νµ charged current 5 <1
Intrinsic νe CC 8 5

Total background 32 15
νµ → νe signal 68 32
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C. Backhouse (Caltech) NOνA νe 6 / 13

¢  We designed a suite of particle ID 
techniques: 
�  ANN: Likelihood ratios for particle hypotheses. 
�  LEM: Matching to MC library events. 
�  BDT: Boosted decision tree on simple 

          reconstructed quantities. 
¢  The plots on the right show promising  
νe signal/background separation. 
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P (⌫µ ! ⌫e) sin2(2✓13) sin2(✓23)f+(L, E, �m2
31)≈ 

{cos �CP cos

�m2
31L

4E
� sin �CP sin

�m2
31L

4E
}+ 

2
�m2

21

�m2
31

sin(✓13)g+(L, E,�m2
31, ✓12, ✓23)× 

EXTRACTING NATURE’S PARAMETERS

¢  The NOνA baseline (L = 810 km) and neutrino beam energy (E = 2 GeV) place our 
detector at the first νµ à νe oscillation peak. 

¢  sin22θ13: the leading term in this equation has already been measured and it is large! 
¢  sin2θ23: we can glean information about the θ23 octant from the leading term. 
¢  δCP: using the measured value of θ13, we can determine the CP-violating phase angle. 
¢  mass hierarchy: depending on the sign of Δm2

31 ~ Δm2
32, the oscillation probability is 

either enhanced or suppressed.  This difference can be determined by comparing 
neutrino running with anti-neutrino running. 

_ 

_ 

+ 

P (⌫̄µ ! ⌫̄e)

± neutrino mode 
± anti-neutrino mode 
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¢  Using the previous 
equations, we can 
calculate the neutrino 
and anti-neutrino 
appearance 
probabilities.  

¢  Assume that NOvA 
would measure where 
the orange arrows 
point (best case 
scenario). 

¢  The bold and dotted 
lines show the 1 and  
2 σ contours that we 
could achieve with: 

¢  3 years neutrino 
running plus 3 years 
anti-neutrino running 

PHYSICS REACH (BI-PROBABILITY PLOTS)

Δm2 > 0 

P (⌫µ ! ⌫e)

P
(⌫̄

µ
!

⌫̄ e
)

θ23 = 45° 
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MASS HIERARCHY AND δCP SENSITIVITY

¢  Given the bi-probability plots from the previous slides and using 
latest analysis framework, we can determine how sensitive we 
will be to resolve the: 
�  Mass Hierarchy (even better with T2K) 
�  CP-violating phase angle (δCP) 
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PHYSICS REACH (θ23 Octant)

P (⌫µ ! ⌫e)

P
(⌫̄

µ
!

⌫̄ e
)

¢  We know that 
sin2(2θ23) is close to 
unity, but what octant 
does θ23 fall in?  
�  θ23 > 45° 
�  θ23 < 45° 

¢  The probability 
ellipses are given for 
both scenarios 
separated by the green 
dotted line. 
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θ23 OCTANT SENSITIVITY

¢  Given the bi-probability plots, we can calculate how 
sensitive we will be to the θ23 octant: 
�  θ23 > 45° (upper octant) 
�  θ23 < 45° (lower octant) 

θ23 > 45° θ23 < 45° 
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PRECISION MEASUREMENTS

¢  Measure θ23, Δm2
32 to the few percent level 

¢  using νµ disappearance:  P (⌫µ ! ⌫µ)
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PRECISION MEASUREMENTS

¢  Measure θ23, Δm2
32 to the few percent level 

¢  using νµ disappearance:  P (⌫µ ! ⌫µ)

MINOS 
best fit 

NOvA Sensitivity 
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EXOTIC SEARCHES
¢  Because the NOvA detector is so 

large and highly-segmented, it 
lends itself to exotic searches: 

¢  Magnetic Monopoles 
�  would be highly ionizing or slow 

moving particles. 
�  The NOvA detector is favorable 

because of its large surface area and 
its surface location. 

�  The plot on the right shows the 
monopole phase space we have 
access to. 

¢  Supernovae 
�  have a large neutrino shockwave. 

¢  WIMP 
�  highly energetic neutrinos 

coming from the sun 
¢  Using the Near Detector: 

�  Neutrino Magnetic Moment 
�  Dark Sector 

magnetic 
monopole 

NOνA:	  	  	  	  	  	  	  	  	  	  4168	  m2	  

MACRO:	  	  	  	  	  	  	  3482	  m2	  

SLIM:	  	  	  	  	  	  	  	  	  	  	  	  	  	  427	  m2	  

OHYA:	  	  	  	  	  	  	  	  	  	  2000	  m2	  
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SUMMARY

¢  Far Detector construction half way complete with first kiloton fully 
instrumented and construction progressing quickly. 

¢  NuMI beam return is imminent! 
¢  Our analysis framework is ready to try to pin down the mass 

hierarchy and the θ23 octant, and have the first glimpse at δCP. 
¢  We will use our detector as an eye to the universe and are excited 

about what we might learn. 
¢  Please see the 5 NOvA posters this evening for more detail. 
¢  We do not only have a massive detector, but also a massive 

collaboration of dedicated people! 
180+ scientists and engineers 

from 35 institutions from 7 countries 
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