BSM Physics At the TeVatron Searches & Signs

Fermilab User's Meeting June 2010

> Leo Bellantoni Fermi National Accelerator Lab

On behalf of the D0 and CDF Collaborations

Topics

Resonances:

- Randall Sundrum
- High mass lepton pairs
- Dibosons (W+W-, W±Z)

Signature driven:

- **үүX**
- $jjE_{\rm T}$ (MISSING)

SUSY & LQ

4th fermion generation

Excitement in Flavor Physics

Randall-Sundrum Gravitons

$$ds^{2} = e^{-2kr_{c}\phi}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + r_{c}^{2}d\phi^{2}$$
SM fields at $\phi = 0$

 $kr_{\rm c} \approx 11-12$ gives observed $M_{\rm P}$ / $M_{\rm EW}$

Predicted spin-2 graviton spectrum:

$$m(G) = \begin{bmatrix} 2.405\\ 5.520\\ 8.654\\ \vdots \end{bmatrix} \left(\frac{k}{\overline{M}} = \frac{k\sqrt{8\pi}}{M_P} \right) \Lambda_{\pi}$$

 $Br(G \rightarrow \gamma \gamma) / Br(G \rightarrow e^+e^-) = 2$

Randall-Sundrum Gravitons

At high $\gamma\gamma$ mass, major backgrounds are $Z/\gamma^* \rightarrow ee$, SM continuum production of $\gamma\gamma$ Both are modeled by fitting MC (PYTHIA, DIPHOX) to a smooth function

 $G \rightarrow \gamma \gamma$

Randall-Sundrum Gravitons

 $G \rightarrow \gamma \gamma, \ G \rightarrow e^+ e^-$

Leo Bellantoni, FNAL FNAL User's Meeting 2010

Accepted by PRL arXiv:1004.1826

Dimuon Resonances

Wide range of models have another spin 1 boson decaying to μ⁺μ⁻

Matrix-element method improves sensitivity 20% over earlier result

]	Model	Mass Limit (GeV/c^2)
	Z'_l	817
	Z'_{sec}	858
	Z'_N	900
	Z'_{ψ}	917
	Z'_{γ}	930
	$Z_n^{\hat{\prime}}$	938
	Z_{SM}^{\prime}	1071

Dielectron Resonances

FNAL User's Meeting 2010

DiBoson Resonances

The production of W^+W^- , $W^\pm Z$, and ZZ has become an important part of the TeVatron program:

SM tests (triple gauge couplings, cross-section) Validation & development of Higgs search techniques Background for BSM searches

Many models predict resonances in diboson production: Randall-Sundrum gravitons, technicolor, sequential bosons . . .

Neutral final states (W^+W^- , ZZ) well studied at LEP but only up to 207GeV

Diboson Resonances

Reconstruct 2 jets - require mass consistent with m(W)Require also an electron with > 30GeV E_T & missing E_T > 30GeV Then only one $\nu \Rightarrow$ can solve for P_z (quadratic ambiguity)

95% C.L. lower limit on mass $G(k/M_P=0.1) \rightarrow WW$ of 632GeV

Accepted by PRL arXiv:1004.4946

Leo Bellantoni, FNAL FNAL User's Meeting 2010 Change 65 < *M*(*jj*) < 95GeV cut to 70 < *M*(*jj*) < 105 GeV cut 284 < m(*W*′→*WZ*) < 515 GeV

W[±]Z Resonances $p\overline{p} \to W^{\pm}Z \to (\ell^{\pm}\nu)(\ell^{+}\ell^{-})$ A very clean channel - trilepton events are rare at the TeVatron $\ell \in \{e, u\}$ Events / 20 GeV W'WZ coupling strength / SSM DØ, 4.1 fb^{-1} 5F Data Excluded 95% C.L. region WZ Monte Carlo Expected 95% C.L. limit 10 $Z+X (X=\gamma, jet, Z)$ ---- SSM value W' 400 GeV SSM signal W' 500 GeV SSM signal 2 DØ, 4.1 fb⁻¹⁻ 100 200 400 500 600 300 700 WZ transverse mass (GeV) 200 300 500 600 900 400700 800 1000W' mass (GeV) $M_{T} = \sqrt{\left(E_{T}^{Z} + E_{T}^{W}\right)^{2} - \left(p_{x}^{Z} + p_{x}^{W}\right)^{2} - \left(p_{y}^{Z} + p_{y}^{W}\right)^{2}}$ $188 < m(W'_{SM}) < 520 GeV$ 95% C.L. Phys.Rev.Lett. Low-scale Technicolor limits 104, 061801 (2010) 208 < m(ρ_T) < 408 GeV for $m(\rho_T) < m(\pi_T) + m(W)$

Signature Driven

 $p\bar{p} \rightarrow \gamma\gamma X, X \in \{e^{\pm}, \mu^{\pm}, \tau^{\pm}, E_{T}\}$

Require 2γ with $E_T > 13$ GeV in 0.05 < $|\eta| < 1.05$

Signature Driven

Many SM extensions require pair-production of new particles (prevents large contributions to well measured SM processes)
Decays to jet + non-interacting particle occur in many models
Look for events with 2 jets and large missing E_T

Backgrounds are W, *Z* production at high $p_{\rm T}$ with jets

Cut-and-count:

No extra jets with $E_{\rm T} > 15~{\rm GeV}$ No isolated tracks with $p_{\rm T} > 10~{\rm GeV}$

Loose sample:

 $E_{\rm T}^{(1)} + E_{\rm T}^{(2)} > 125 \text{ GeV}$ $E_{\rm T} > 0 \text{ GeV}$ 2506 observed *vs* 2443 ± 151 expected

Tight sample:

 $E_{\rm T}^{(1)} + E_{\rm T}^{(2)} > 225 \text{ GeV}$ $E_{\rm T} > 100 \text{ GeV}$ 186 observed *vs* 211 ± 30 expected

> Leo Bellantoni, FNAL FNAL User's Meeting 2010

 $m(\text{scalar LQ} \rightarrow qv) > 187 \text{ GeV}$

Submitted to P.R.L arXiv:0912.4691

SUSY beauty: \tilde{b}

$$p\bar{p} \rightarrow bb \not{E}_{\mathrm{T}}$$

Submitted to P.R.L. arXiv:1005.3600

Leptoquarks & \tilde{b}

 $p\overline{p} \rightarrow LQ_{3} \overline{LQ_{3}} \rightarrow b\overline{b} \, v\overline{v}$ $Very \ similar \ to$ $p\overline{p} \rightarrow b_{1}^{\sim} \widetilde{b}_{1} \rightarrow b\overline{b} \, \widetilde{\chi}_{1}^{0} \, \widetilde{\chi}_{1}^{0}$

signal is 2 b jets with $E_{\mathrm{T}}^{\mathrm{MISS}}$

4th SM fermion generation

Cancellation of gauge anomalies requires either all 4 fermions or none at all!

EW Precision Constraints $m(\tau') - m(\nu') \approx 60 - 85 \, GeV$ $|m(t') - m(b')| \leq 30 \, GeV$ $m(f') - m(\exp.1imit) \text{ small}$ Direct searches:

 $m(v'_{MAJ}) > 80.5 \text{ GeV}$ $m(v'_{DIRAC}) > 90.3 \text{ GeV}$ $m(\tau') > 100.8 \text{ GeV}$

 $\sim q' \rightarrow q^{(3)} + W$

See also arXiv:1005.3505 arXiv:1005.1077 arXiv:1003.3211 arXiv:1002.0595

> Combined TeVatron limits on *m*_H arXiv:1005.3216

4th SM fermion generation

 b': look for LS dilepton+jets
 +MET events

 t': look for lepton+jets
 +MET events

Like the search for top but:

Reduce sensitivity to CKM mixing by NOT b-tagging
Large t' mass ⇒ large scalar sum of E_T

Leo Bellantoni, FNAL FNAL User's Meeting 2010

17

t' Search

In each event, a fit assigns reconstructed jets to partons, resolves 2-fold ambiguity in $E_z(v)$ and assigns $m_{\text{RECO}}(t')$

Then use $m_{\text{RECO}}(t')$ and $H_{\text{T}} = \Sigma E_{\text{T}}$ distributions from data and linear combination of background distributions in likelihood fits

Signs of New Physics

Neutral meson mixing simplified:

$$i\frac{\partial}{\partial t}\begin{bmatrix} |B^{0}\rangle \\ |\overline{B}^{0}\rangle \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} |B^{0}\rangle \\ |\overline{B}^{0}\rangle \end{bmatrix}$$

To get $H_{12} = M_{12} - (i/2)\Gamma_{12}$ right, you need to know all the intermediate states; and if you got H_{12} wrong, there might be new-physics intermediate states that you don't know about!

If
$$arg(M_{12}/\Gamma_{12}) \neq 0$$
, rate $(B^0_{d,s} \rightarrow \overline{B}^0_{d,s}) \neq$ the rate $(\overline{B}^0_{d,s} \rightarrow B^0_{d,s})$

Then
$$\frac{\Gamma(\overline{B}_{q}^{0} \rightarrow \mu^{+}X) - \Gamma(B_{q}^{0} \rightarrow \mu^{-}X)}{\Gamma(\overline{B}_{q}^{0} \rightarrow \mu^{+}X) + \Gamma(B_{q}^{0} \rightarrow \mu^{-}X)} \neq 0 \qquad \begin{array}{c} \text{Inclusive muon} \\ \text{charge asymmetry} \end{array}$$

New Physics from Flavor Physics

There are few other sources of like-sign dimuons From the signal process, dimuon and inclusive muon asymmetries will be equal Combining both inclusive and like-sign dimuons works best (backgrounds are correlated)

Submitted to P.R.D. arXiv:1005.2757 FNAL Pub 10/114-E

$$A_{sl}^{b} = (-9.57 \pm 2.51_{\text{STAT}} \pm 1.46_{\text{SYST}}) \times 10^{-3}$$
$$A_{sl}^{b} [SM \ prediction] = (-0.23 \ _{-0.06}^{+0.05}) \times 10^{-3}$$

3.2 σ (99.8% C.L.) disagreement with SM

Using Lenz & Nierste, JHEP 0706:072 (2007) Grossman et.al. PRL 97, 151801(2006)

New Physics from Flavor Physics

Constrain the CP violation parameters $\phi_s \approx -2\beta$ and $\Delta\Gamma_s$ Compare against values from $B_s \rightarrow J/\psi \phi$

Summary

The TeVatron has a wide-ranging program of searches for new phenomena; I have been able to cover only the most recent work

We have signs of, if not proof of, interesting new physics from B_s mixing

http://www-cdf.fnal.gov/physics/physics.html
http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

Thanks to:

Arnaud Duperrin, G. Brooijmans, O. Gonzalez, Tom Wright, Todd Adams, J. Conway, our conference organizers, and the many people whose efforts made these results possible

Extra Slides

TeVatron Performance

Large data samples: $\sim 8.6 \text{ fb}^{-1}$ already

multi-years running ⇒ CDF & D0 detectors are well-understood

Both detectors measure e, μ, γ , jets, τ and $E_{\rm T}^{\rm MISS}$ well and tag τ, b, c with vertex detectors

http://www-cdf.fnal.gov/physics/physics.html
http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

ZZ Resonances

FNAL User's Meeting 2010