
R.Piegaia HCPSS08/Statistics 1

Statistics for Particle Physics
Theory, methods, and examples

Ricardo Piegaia
Physics Department
Univ Buenos Aires

August 14-16, 2008



What’s the big deal R.Piegaia HCPSS08/Statistics 2

What’s the big deal about Probability and Statistics?

After all it is just mathematics, isn’t it?

Mathematics

Developped “long ago”
Can be easy ...

I Linear Algebra
I Elementary Calculus

Can be hard ...
I Semicompact Lie Groups
I Topological Hausdorff Spaces

but it is essentiall “done”:
XIX century, early XX century at the latest...



What’s the big deal R.Piegaia HCPSS08/Statistics 2

What’s the big deal about Probability and Statistics?

After all it is just mathematics, isn’t it?

Mathematics
Developped “long ago”

Can be easy ...
I Linear Algebra
I Elementary Calculus

Can be hard ...
I Semicompact Lie Groups
I Topological Hausdorff Spaces

but it is essentiall “done”:
XIX century, early XX century at the latest...



What’s the big deal R.Piegaia HCPSS08/Statistics 2

What’s the big deal about Probability and Statistics?

After all it is just mathematics, isn’t it?

Mathematics
Developped “long ago”
Can be easy ...

I Linear Algebra
I Elementary Calculus

Can be hard ...
I Semicompact Lie Groups
I Topological Hausdorff Spaces

but it is essentiall “done”:
XIX century, early XX century at the latest...



What’s the big deal R.Piegaia HCPSS08/Statistics 2

What’s the big deal about Probability and Statistics?

After all it is just mathematics, isn’t it?

Mathematics
Developped “long ago”
Can be easy ...

I Linear Algebra
I Elementary Calculus

Can be hard ...
I Semicompact Lie Groups
I Topological Hausdorff Spaces

but it is essentiall “done”:
XIX century, early XX century at the latest...



What’s the big deal R.Piegaia HCPSS08/Statistics 2

What’s the big deal about Probability and Statistics?

After all it is just mathematics, isn’t it?

Mathematics
Developped “long ago”
Can be easy ...

I Linear Algebra
I Elementary Calculus

Can be hard ...
I Semicompact Lie Groups
I Topological Hausdorff Spaces

but it is essentiall “done”:
XIX century, early XX century at the latest...



What’s the big deal R.Piegaia HCPSS08/Statistics 3

Same thing when I studied Probability in school:
To a large extent “closed”
Fun
Basically applicable to gaming theory

Statistics was somewhat different (and murkier..)
Basically simple sampling examples.
The χ2 recipe.
Not at all like the clean Mathematics I was used to.

And then I became an experimental high energy physicists....
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Lots of interesting recipes that help solve all kind of useful stuff.

Lots of unsolved problems: Far from closed or done.

Lots of activity of people trying to understand:

î why we do what we do
î how to do it better
î what to do next

In fact most of what I am going to tell in these three lectures comes
from papers published by physicists in the last 10 years.

Unified approach to the classical statistical analysis of small signals

Gary J. Feldman*

Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousins†

Department of Physics and Astronomy, University of California, Los Angeles, California 90095
~Received 21 November 1997; published 6 March 1998!

We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem
~apparently not previously recognized! that the choice of upper limit or two-sided intervals leads to intervals
which are not confidence intervals if the choice is based on the data. We apply the construction to two related
problems which have recently been a battleground between classical and Bayesian statistics: Poisson processes
with background and Gaussian errors with a bounded physical region. In contrast with the usual classical
construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism~frequentist coverage greater than the stated
confidence! in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We
generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We
show that this technique both gives correct coverage and is powerful, while other classical techniques that have
been used by neutrino oscillation search experiments fail one or both of these criteria.
@S0556-2821~98!00109-X#

PACS number~s!: 06.20.Dk, 14.60.Pq

I. INTRODUCTION

Classical confidence intervals are the traditional way in
which high energy physicists report errors on results of ex-
periments. Approximate methods of confidence interval con-
struction, in particular the likelihood-ratio method, are often
used in order to reduce computation. When these approxima-
tions are invalid, true confidence intervals can be obtained
using the original~defining! construction of Neyman@1#. In
recent years, there has been considerable dissatisfaction with
the usual results of Neyman’s construction for upper confi-
dence limits, in particular when the result is an unphysical
~or empty set! interval. This dissatisfaction led the Particle
Data Group~PDG! @2# to describe procedures for Bayesian
interval construction in the troublesome cases: Poisson pro-
cesses with background and Gaussian errors with a bounded
physical region.

In this paper, we use the freedom inherent in Neyman’s
construction in a novel way to obtain a unified set of classi-
cal confidence intervals for setting upper limits and quoting
two-sided confidence intervals. The new element is a particu-
lar choice of ordering, based on likelihood ratios, which we
substitute for more common choices in Neyman’s construc-
tion. We then obtain confidence intervals which are never
unphysical or empty. Thus they remove an original motiva-
tion for the description of Bayesian intervals by the PDG.

Moreover, we show below that commonly quoted confi-
dence intervals are wrongmore than allowed by the stated
confidenceif ~as is typical! one uses the experimental data to

decide whether to consult confidence interval tables for up-
per limits or for central confidence intervals. In contrast, our
unified set of confidence intervals satisfies~by construction!
the classical criterion of frequentist coverage of the unknown
true value. Thus the problem of wrong confidence intervals
is also solved.

Our intervals also effectively decouple the calculation of
intervals from the test of goodness-of-fit, which is desirable
but in fact not the case for traditional classical upper limit
calculations.

After developing the new intervals for the two prototypi-
cal 1D problems, we generalize them for use in the analysis
of experiments searching for neutrino oscillations, continu-
ing to adhere to the Neyman construction.

In Sec. II, we review and contrast Bayesian and classical
interval construction. In Sec. III, we review the troublesome
cases of Poisson processes with background and Gaussian
errors with a bounded physical region. We introduce the uni-
fying ordering principle in Sec. IV, and apply it to the pre-
viously discussed problems. In Sec. V, we generalize the
method for use in neutrino oscillation searches, and compare
it to other classical methods. Finally, in Sec. VI, we intro-
duce an additional quantity helpful in describing experiments
which observe less background than expected. We conclude
in Sec. VII.

We adopt the following notation: the subscriptt on a
parameter means the unknown true value; the subscript 0
means a particular measured value obtained by an experi-
ment. Thus, for example,m is a parameter whose true value
m t is unknown;n0 is the particular result of an experiment
which measures the number of events,n. For most of our
discussion, we use for illustration 90% confidence level
~C.L.! confidence intervals on a single parameterm. The C.L.
is more generally calleda.

*Email address: feldman@physics.harvard.edu
†Email address: cousins@physics.ucla.edu
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The statistical analysis of Gaussian and Poisson signals
near physical boundaries

Mark Mandelkern and Jonas Schultz
Department of Physics and Astronomy, University of California, Irvine, California 92697

~Received 22 February 2000; accepted for publication 17 April 2000!

We propose a construction of frequentist confidence intervals that is effective near
unphysical regions and unifies the treatment of two-sided and upper limit intervals.
It is rigorous, has coverage, is computationally simple and avoids the pathologies
that affect the likelihood ratio and related constructions. Away from nonphysical
regions, the results are exactly the usual central two-sided intervals. The construc-
tion is based on including the physical constraint in the derivation of the estimator,
leading to an estimator with values that are confined to the physical domain.
© 2000 American Institute of Physics.@S0022-2488~00!03508-8#

I. INTRODUCTION

Obtaining confidence intervals near physical boundaries is a long-standing problem. Experi-
ments designed to detect a nonzero neutrino mass by observing neutrino oscillation or to detect a
small resonance signal in the presence of background are examples in which a negative result may
be obtained for a quantity that is intrinsically positive. The difficulty arises when the estimate for
the Gaussian or Poisson mean, as obtained from the data, is near or beyond the physical boundary,
in which case the standard~classical! result of Neyman’s construction is an unphysical or null
interval as illustrated in Figs. 1 and 2.

For the Gaussian case, Fig. 1, one obtains central confidence intervals for the meanm con-
strained to be non-negative, using the sample meanx̄ as the estimator form. x̄ sufficiently
negative leads to the null interval. Despite the fact that the construction has coveragea, which
means that, for any given true mean, the confidence interval includes that value with probability
a, the null intervalcannotcontain any true mean. It is necessarily one of the measured intervals
that, with probability 12a, fail to contain the true mean. Even the non-null intervals obtained by
this method for some negative values of the estimator are unphysically small in that,for most
possible (true) means, the confidence interval does not contain the true mean.

The other difficult case, illustrated in Fig. 2, is that of Poisson distributed data with unknown
signal meanm>0, in the presence of a background with known non-negative meanb; n is the
result of a single observation. Forn,b the interval form is unphysically small. For sufficiently
small n the interval is null. The implausibility of the resulting intervals is well illustrated by the
example shown. For a background-free (b50) experiment that measures zero events (n50), the
90% upper limit form is 2.62, for the explicit construction exhibited in Fig. 2.~We note that,
depending upon the particular choice of construction, the 90% upper limit obtained for the case
b50, n50 can vary over a small range; e.g., the limit is 2.30 for a one-sided upper limit
construction, 2.44 for the methods of Refs. 3 and 4 and 2.62 for the construction presented here.!
For an experiment with known mean backgroundb53.0 that measures 0~1! events, the upper limit
for m is 0~1.7!. Thus the poorer experiment has the potential to yield a much smaller~but not
believable! upper limit.

When the estimator takes on a value near or beyond the physical limit, we have information
greater than that available when no boundary is present since we knowa priori that the true value
is not beyond the boundary. For the Gaussian case, where the confidence intervals are of fixed
length for measurements away from the boundary, we expect smaller confidence intervals for
measurements near or beyond the boundary. The classical construction gives this feature. We also
know that an estimate for the parameter beyond the physical limit is relatively improbable. The
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Including systematic uncertainties in confidence interval construction for Poisson statistics

J. Conrad, O. Botner, A. Hallgren, and C. Pe´rez de los Heros
Division of High Energy Physics, Uppsala University, S-75121 Uppsala, Sweden

~Received 30 January 2002; published 10 January 2003!

One way to incorporate systematic uncertainties into the calculation of confidence intervals is by integrating
over probability density functions parametrizing the uncertainties. In this paper we present a development of
this method which takes into account uncertainties in the prediction of background processes and uncertainties
in the signal detection efficiency and background efficiency, and allows for a correlation between the signal and
background detection efficiencies. We implement this method with the likelihood ratio~usually denoted as the
Feldman-Cousins! approach with and without conditioning. We present studies of coverage for the likelihood
ratio and Neyman ordering schemes. In particular, we present two different types of coverage tests for the case
where systematic uncertainties are included. To illustrate the method we show the relative effect of including
systematic uncertainties in the case of the dark matter search as performed by modern neutrino telescopes.

DOI: 10.1103/PhysRevD.67.012002 PACS number~s!: 06.20.Dk, 95.55.Vj

I. INTRODUCTION

A limit on, or a measurement of, a physical quantity at a
given confidence level is usually set by comparing a number
of detected events,no , with the number of expected events
from the known background sources contributing to the
physical process in question,nb . How ‘‘compatible’’ these
numbers are determines how much room there is for new
processes, i.e., for a signal. How well the number of ob-
served events and expected background compare strongly
depends on the systematic uncertainties present in the mea-
surement. Systematic uncertainties must, therefore, be taken
into account in the limit or confidence belt calculation that is
finally published.

Traditionally, confidence limits are set using a Neyman
construction@1#. This is a purely frequentist method. Feld-
man and Cousins@2# have proposed an improved method to
construct confidence intervals based on likelihood ratios, a
method already known in statistics and originally described
in @3#. Still, this method is based on the original Neyman
construction, and needs to be extended to incorporate sys-
tematic uncertainties in the measurement. Along this line, a
modification of the Neyman method that incorporates sys-
tematic uncertainties in the experimental signal efficiency
has been proposed by Highland and Cousins@4#. These au-
thors use a ‘‘semi-Bayesian’’ approach where an average
over the probability distribution of the experimental sensitiv-
ity ~and its uncertainty! is performed. By construction, the
method is of limited accuracy in the limit of high relative
systematic uncertainties.

Recently, an entirely frequentist approach has been pro-
posed for the uncertainty in the background rate prediction
@5#. That approach is based on a two-dimensional confidence
belt construction and likelihood ratio hypothesis testing and
treats the uncertainty in the background as a statistical un-
certainty rather than as a systematic one.

The interest aroused recently in the high energy physics
community about the many open issues on setting limits and
quoting confidence levels is stressed by the organization of
workshops devoted to the subject. We refer the reader to the
proceedings of the recent workshops at CERN@6#, Fermilab

@7#, and Durham@8# for a review of the status of the field.
In this paper we extend the method of confidence belt

construction proposed in@4# to include systematic uncertain-
ties in both the signal and background efficiencies as well as
theoretical uncertainties in the background prediction. The
proposed method also allows us to use newer ordering
schemes. A recent attempt to include systematic uncertainty
in the background prediction in a similar manner has been
presented in@9#. The paper is organized as follows. In Sec. II
we give a short review of the confidence belt construction
schemes that we will use. In Sec. III we describe how to
include the systematic uncertainties; in Sec. IV we discuss
how the confidence belt construction is performed and
present some selected results. We compare the results of this
method with other methods to include systematics in Sec. V.
We introduce the tests of coverage performed in Sec. VI and
present an example based on data from the Antarctic Muon
and Neutrino Detector Array~AMANDA ! neutrino experi-
ment in Sec. VII.

II. THE CONSTRUCTION OF CONFIDENCE INTERVALS

The frequentist construction of confidence intervals is de-
scribed in detail elsewhere@10#. Here we will give just a
short review.

Let us consider a Poissonian probability density function
~PDF! p(n)s1b for a fixed but unknown signals in the pres-
ence of a known background with meanb. For every value
of s we can find two valuesn1 andn2 such that

(
n85n1

n2

p~n8!s1b512a ~1!

where 12a denotes the confidence level@usually quoted as
a 100(12a)% confidence interval#. Since we assume a
Poisson distribution, the equality will generally not be satis-
fied exactly. A set of intervals@n1(s1b,a),n2(s1b,a)# is
called aconfidence belt. Graphically, upon a measurementno
theconfidence interval@s1 ,s2# is determined by the intersec-
tion of the vertical line drawn from the measured valueno
and the boundary of the confidence belt. This is illustrated in
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1. Introduction

The calculation of confidence intervals (or
setting of limits) on a parameter of a theory is
one of the most important problems an experi-
mental physicist can face. In the frequentist
approach which we follow here, the main property
which confidence intervals have to fulfill is to have
coverage. A method is said to yield a 100ð1� aÞ%

confidence interval if, were the experiment to be
repeated many times, the resulting intervals would
include (or cover) the true parameter at least
100ð1� aÞ% of the time, no matter what the true
parameter is. Using a construction method due to
Neyman [1], Feldman and Cousins [2] in 1998
found confidence intervals for the case of one
nuisance parameter when its value is known
exactly. An alternative method used widely in
high-energy physics prior to the publication of
Feldman and Cousins is to extract confidence
intervals by finding the points where the �2 log
likelihood function increases by a factor defined by
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We propose a construction of frequentist confidence intervals that is effective near
unphysical regions and unifies the treatment of two-sided and upper limit intervals.
It is rigorous, has coverage, is computationally simple and avoids the pathologies
that affect the likelihood ratio and related constructions. Away from nonphysical
regions, the results are exactly the usual central two-sided intervals. The construc-
tion is based on including the physical constraint in the derivation of the estimator,
leading to an estimator with values that are confined to the physical domain.
© 2000 American Institute of Physics.@S0022-2488~00!03508-8#

I. INTRODUCTION

Obtaining confidence intervals near physical boundaries is a long-standing problem. Experi-
ments designed to detect a nonzero neutrino mass by observing neutrino oscillation or to detect a
small resonance signal in the presence of background are examples in which a negative result may
be obtained for a quantity that is intrinsically positive. The difficulty arises when the estimate for
the Gaussian or Poisson mean, as obtained from the data, is near or beyond the physical boundary,
in which case the standard~classical! result of Neyman’s construction is an unphysical or null
interval as illustrated in Figs. 1 and 2.

For the Gaussian case, Fig. 1, one obtains central confidence intervals for the meanm con-
strained to be non-negative, using the sample meanx̄ as the estimator form. x̄ sufficiently
negative leads to the null interval. Despite the fact that the construction has coveragea, which
means that, for any given true mean, the confidence interval includes that value with probability
a, the null intervalcannotcontain any true mean. It is necessarily one of the measured intervals
that, with probability 12a, fail to contain the true mean. Even the non-null intervals obtained by
this method for some negative values of the estimator are unphysically small in that,for most
possible (true) means, the confidence interval does not contain the true mean.

The other difficult case, illustrated in Fig. 2, is that of Poisson distributed data with unknown
signal meanm>0, in the presence of a background with known non-negative meanb; n is the
result of a single observation. Forn,b the interval form is unphysically small. For sufficiently
small n the interval is null. The implausibility of the resulting intervals is well illustrated by the
example shown. For a background-free (b50) experiment that measures zero events (n50), the
90% upper limit form is 2.62, for the explicit construction exhibited in Fig. 2.~We note that,
depending upon the particular choice of construction, the 90% upper limit obtained for the case
b50, n50 can vary over a small range; e.g., the limit is 2.30 for a one-sided upper limit
construction, 2.44 for the methods of Refs. 3 and 4 and 2.62 for the construction presented here.!
For an experiment with known mean backgroundb53.0 that measures 0~1! events, the upper limit
for m is 0~1.7!. Thus the poorer experiment has the potential to yield a much smaller~but not
believable! upper limit.

When the estimator takes on a value near or beyond the physical limit, we have information
greater than that available when no boundary is present since we knowa priori that the true value
is not beyond the boundary. For the Gaussian case, where the confidence intervals are of fixed
length for measurements away from the boundary, we expect smaller confidence intervals for
measurements near or beyond the boundary. The classical construction gives this feature. We also
know that an estimate for the parameter beyond the physical limit is relatively improbable. The

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 8 AUGUST 2000

57010022-2488/2000/41(8)/5701/9/$17.00 © 2000 American Institute of Physics

Downloaded 04 Apr 2008 to 157.92.44.71. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

Including systematic uncertainties in confidence interval construction for Poisson statistics

J. Conrad, O. Botner, A. Hallgren, and C. Pe´rez de los Heros
Division of High Energy Physics, Uppsala University, S-75121 Uppsala, Sweden

~Received 30 January 2002; published 10 January 2003!

One way to incorporate systematic uncertainties into the calculation of confidence intervals is by integrating
over probability density functions parametrizing the uncertainties. In this paper we present a development of
this method which takes into account uncertainties in the prediction of background processes and uncertainties
in the signal detection efficiency and background efficiency, and allows for a correlation between the signal and
background detection efficiencies. We implement this method with the likelihood ratio~usually denoted as the
Feldman-Cousins! approach with and without conditioning. We present studies of coverage for the likelihood
ratio and Neyman ordering schemes. In particular, we present two different types of coverage tests for the case
where systematic uncertainties are included. To illustrate the method we show the relative effect of including
systematic uncertainties in the case of the dark matter search as performed by modern neutrino telescopes.
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I. INTRODUCTION

A limit on, or a measurement of, a physical quantity at a
given confidence level is usually set by comparing a number
of detected events,no , with the number of expected events
from the known background sources contributing to the
physical process in question,nb . How ‘‘compatible’’ these
numbers are determines how much room there is for new
processes, i.e., for a signal. How well the number of ob-
served events and expected background compare strongly
depends on the systematic uncertainties present in the mea-
surement. Systematic uncertainties must, therefore, be taken
into account in the limit or confidence belt calculation that is
finally published.

Traditionally, confidence limits are set using a Neyman
construction@1#. This is a purely frequentist method. Feld-
man and Cousins@2# have proposed an improved method to
construct confidence intervals based on likelihood ratios, a
method already known in statistics and originally described
in @3#. Still, this method is based on the original Neyman
construction, and needs to be extended to incorporate sys-
tematic uncertainties in the measurement. Along this line, a
modification of the Neyman method that incorporates sys-
tematic uncertainties in the experimental signal efficiency
has been proposed by Highland and Cousins@4#. These au-
thors use a ‘‘semi-Bayesian’’ approach where an average
over the probability distribution of the experimental sensitiv-
ity ~and its uncertainty! is performed. By construction, the
method is of limited accuracy in the limit of high relative
systematic uncertainties.

Recently, an entirely frequentist approach has been pro-
posed for the uncertainty in the background rate prediction
@5#. That approach is based on a two-dimensional confidence
belt construction and likelihood ratio hypothesis testing and
treats the uncertainty in the background as a statistical un-
certainty rather than as a systematic one.

The interest aroused recently in the high energy physics
community about the many open issues on setting limits and
quoting confidence levels is stressed by the organization of
workshops devoted to the subject. We refer the reader to the
proceedings of the recent workshops at CERN@6#, Fermilab

@7#, and Durham@8# for a review of the status of the field.
In this paper we extend the method of confidence belt

construction proposed in@4# to include systematic uncertain-
ties in both the signal and background efficiencies as well as
theoretical uncertainties in the background prediction. The
proposed method also allows us to use newer ordering
schemes. A recent attempt to include systematic uncertainty
in the background prediction in a similar manner has been
presented in@9#. The paper is organized as follows. In Sec. II
we give a short review of the confidence belt construction
schemes that we will use. In Sec. III we describe how to
include the systematic uncertainties; in Sec. IV we discuss
how the confidence belt construction is performed and
present some selected results. We compare the results of this
method with other methods to include systematics in Sec. V.
We introduce the tests of coverage performed in Sec. VI and
present an example based on data from the Antarctic Muon
and Neutrino Detector Array~AMANDA ! neutrino experi-
ment in Sec. VII.

II. THE CONSTRUCTION OF CONFIDENCE INTERVALS

The frequentist construction of confidence intervals is de-
scribed in detail elsewhere@10#. Here we will give just a
short review.

Let us consider a Poissonian probability density function
~PDF! p(n)s1b for a fixed but unknown signals in the pres-
ence of a known background with meanb. For every value
of s we can find two valuesn1 andn2 such that

(
n85n1

n2

p~n8!s1b512a ~1!

where 12a denotes the confidence level@usually quoted as
a 100(12a)% confidence interval#. Since we assume a
Poisson distribution, the equality will generally not be satis-
fied exactly. A set of intervals@n1(s1b,a),n2(s1b,a)# is
called aconfidence belt. Graphically, upon a measurementno
theconfidence interval@s1 ,s2# is determined by the intersec-
tion of the vertical line drawn from the measured valueno
and the boundary of the confidence belt. This is illustrated in

PHYSICAL REVIEW D 67, 012002 ~2003!

0556-2821/2003/67~1!/012002~11!/$20.00 ©2003 The American Physical Society67 012002-1

Nuclear Instruments and Methods in Physics Research A 551 (2005) 493–503

Limits and confidence intervals in the presence of
nuisance parameters

Wolfgang A. Rolkea,�, Angel M. Lópezb, Jan Conradc
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1. Introduction

The calculation of confidence intervals (or
setting of limits) on a parameter of a theory is
one of the most important problems an experi-
mental physicist can face. In the frequentist
approach which we follow here, the main property
which confidence intervals have to fulfill is to have
coverage. A method is said to yield a 100ð1� aÞ%

confidence interval if, were the experiment to be
repeated many times, the resulting intervals would
include (or cover) the true parameter at least
100ð1� aÞ% of the time, no matter what the true
parameter is. Using a construction method due to
Neyman [1], Feldman and Cousins [2] in 1998
found confidence intervals for the case of one
nuisance parameter when its value is known
exactly. An alternative method used widely in
high-energy physics prior to the publication of
Feldman and Cousins is to extract confidence
intervals by finding the points where the �2 log
likelihood function increases by a factor defined by
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We propose a construction of frequentist confidence intervals that is effective near
unphysical regions and unifies the treatment of two-sided and upper limit intervals.
It is rigorous, has coverage, is computationally simple and avoids the pathologies
that affect the likelihood ratio and related constructions. Away from nonphysical
regions, the results are exactly the usual central two-sided intervals. The construc-
tion is based on including the physical constraint in the derivation of the estimator,
leading to an estimator with values that are confined to the physical domain.
© 2000 American Institute of Physics.@S0022-2488~00!03508-8#

I. INTRODUCTION

Obtaining confidence intervals near physical boundaries is a long-standing problem. Experi-
ments designed to detect a nonzero neutrino mass by observing neutrino oscillation or to detect a
small resonance signal in the presence of background are examples in which a negative result may
be obtained for a quantity that is intrinsically positive. The difficulty arises when the estimate for
the Gaussian or Poisson mean, as obtained from the data, is near or beyond the physical boundary,
in which case the standard~classical! result of Neyman’s construction is an unphysical or null
interval as illustrated in Figs. 1 and 2.

For the Gaussian case, Fig. 1, one obtains central confidence intervals for the meanm con-
strained to be non-negative, using the sample meanx̄ as the estimator form. x̄ sufficiently
negative leads to the null interval. Despite the fact that the construction has coveragea, which
means that, for any given true mean, the confidence interval includes that value with probability
a, the null intervalcannotcontain any true mean. It is necessarily one of the measured intervals
that, with probability 12a, fail to contain the true mean. Even the non-null intervals obtained by
this method for some negative values of the estimator are unphysically small in that,for most
possible (true) means, the confidence interval does not contain the true mean.

The other difficult case, illustrated in Fig. 2, is that of Poisson distributed data with unknown
signal meanm>0, in the presence of a background with known non-negative meanb; n is the
result of a single observation. Forn,b the interval form is unphysically small. For sufficiently
small n the interval is null. The implausibility of the resulting intervals is well illustrated by the
example shown. For a background-free (b50) experiment that measures zero events (n50), the
90% upper limit form is 2.62, for the explicit construction exhibited in Fig. 2.~We note that,
depending upon the particular choice of construction, the 90% upper limit obtained for the case
b50, n50 can vary over a small range; e.g., the limit is 2.30 for a one-sided upper limit
construction, 2.44 for the methods of Refs. 3 and 4 and 2.62 for the construction presented here.!
For an experiment with known mean backgroundb53.0 that measures 0~1! events, the upper limit
for m is 0~1.7!. Thus the poorer experiment has the potential to yield a much smaller~but not
believable! upper limit.

When the estimator takes on a value near or beyond the physical limit, we have information
greater than that available when no boundary is present since we knowa priori that the true value
is not beyond the boundary. For the Gaussian case, where the confidence intervals are of fixed
length for measurements away from the boundary, we expect smaller confidence intervals for
measurements near or beyond the boundary. The classical construction gives this feature. We also
know that an estimate for the parameter beyond the physical limit is relatively improbable. The
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One way to incorporate systematic uncertainties into the calculation of confidence intervals is by integrating
over probability density functions parametrizing the uncertainties. In this paper we present a development of
this method which takes into account uncertainties in the prediction of background processes and uncertainties
in the signal detection efficiency and background efficiency, and allows for a correlation between the signal and
background detection efficiencies. We implement this method with the likelihood ratio~usually denoted as the
Feldman-Cousins! approach with and without conditioning. We present studies of coverage for the likelihood
ratio and Neyman ordering schemes. In particular, we present two different types of coverage tests for the case
where systematic uncertainties are included. To illustrate the method we show the relative effect of including
systematic uncertainties in the case of the dark matter search as performed by modern neutrino telescopes.
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I. INTRODUCTION

A limit on, or a measurement of, a physical quantity at a
given confidence level is usually set by comparing a number
of detected events,no , with the number of expected events
from the known background sources contributing to the
physical process in question,nb . How ‘‘compatible’’ these
numbers are determines how much room there is for new
processes, i.e., for a signal. How well the number of ob-
served events and expected background compare strongly
depends on the systematic uncertainties present in the mea-
surement. Systematic uncertainties must, therefore, be taken
into account in the limit or confidence belt calculation that is
finally published.

Traditionally, confidence limits are set using a Neyman
construction@1#. This is a purely frequentist method. Feld-
man and Cousins@2# have proposed an improved method to
construct confidence intervals based on likelihood ratios, a
method already known in statistics and originally described
in @3#. Still, this method is based on the original Neyman
construction, and needs to be extended to incorporate sys-
tematic uncertainties in the measurement. Along this line, a
modification of the Neyman method that incorporates sys-
tematic uncertainties in the experimental signal efficiency
has been proposed by Highland and Cousins@4#. These au-
thors use a ‘‘semi-Bayesian’’ approach where an average
over the probability distribution of the experimental sensitiv-
ity ~and its uncertainty! is performed. By construction, the
method is of limited accuracy in the limit of high relative
systematic uncertainties.

Recently, an entirely frequentist approach has been pro-
posed for the uncertainty in the background rate prediction
@5#. That approach is based on a two-dimensional confidence
belt construction and likelihood ratio hypothesis testing and
treats the uncertainty in the background as a statistical un-
certainty rather than as a systematic one.

The interest aroused recently in the high energy physics
community about the many open issues on setting limits and
quoting confidence levels is stressed by the organization of
workshops devoted to the subject. We refer the reader to the
proceedings of the recent workshops at CERN@6#, Fermilab

@7#, and Durham@8# for a review of the status of the field.
In this paper we extend the method of confidence belt

construction proposed in@4# to include systematic uncertain-
ties in both the signal and background efficiencies as well as
theoretical uncertainties in the background prediction. The
proposed method also allows us to use newer ordering
schemes. A recent attempt to include systematic uncertainty
in the background prediction in a similar manner has been
presented in@9#. The paper is organized as follows. In Sec. II
we give a short review of the confidence belt construction
schemes that we will use. In Sec. III we describe how to
include the systematic uncertainties; in Sec. IV we discuss
how the confidence belt construction is performed and
present some selected results. We compare the results of this
method with other methods to include systematics in Sec. V.
We introduce the tests of coverage performed in Sec. VI and
present an example based on data from the Antarctic Muon
and Neutrino Detector Array~AMANDA ! neutrino experi-
ment in Sec. VII.

II. THE CONSTRUCTION OF CONFIDENCE INTERVALS

The frequentist construction of confidence intervals is de-
scribed in detail elsewhere@10#. Here we will give just a
short review.

Let us consider a Poissonian probability density function
~PDF! p(n)s1b for a fixed but unknown signals in the pres-
ence of a known background with meanb. For every value
of s we can find two valuesn1 andn2 such that

(
n85n1

n2

p~n8!s1b512a ~1!

where 12a denotes the confidence level@usually quoted as
a 100(12a)% confidence interval#. Since we assume a
Poisson distribution, the equality will generally not be satis-
fied exactly. A set of intervals@n1(s1b,a),n2(s1b,a)# is
called aconfidence belt. Graphically, upon a measurementno
theconfidence interval@s1 ,s2# is determined by the intersec-
tion of the vertical line drawn from the measured valueno
and the boundary of the confidence belt. This is illustrated in
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1. Introduction

The calculation of confidence intervals (or
setting of limits) on a parameter of a theory is
one of the most important problems an experi-
mental physicist can face. In the frequentist
approach which we follow here, the main property
which confidence intervals have to fulfill is to have
coverage. A method is said to yield a 100ð1� aÞ%

confidence interval if, were the experiment to be
repeated many times, the resulting intervals would
include (or cover) the true parameter at least
100ð1� aÞ% of the time, no matter what the true
parameter is. Using a construction method due to
Neyman [1], Feldman and Cousins [2] in 1998
found confidence intervals for the case of one
nuisance parameter when its value is known
exactly. An alternative method used widely in
high-energy physics prior to the publication of
Feldman and Cousins is to extract confidence
intervals by finding the points where the �2 log
likelihood function increases by a factor defined by
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Abstract

For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic

parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method,1 the

systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim

method (see footnote 1), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution

of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is

derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an

individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of

events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim

model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case,

the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be

made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can

have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a

factor of k2.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In many experiments there are a number of systematic
error parameters. If the experimental data is divided into a
set of bins, the effect of a change in a given systematic
parameter on a given data bin can be quite complicated.
For example, in a visual detector, the effect of a change in
an optical model parameter on the number of events of a
given type in a data bin may not be directly calculable.
Monte Carlo (MC) techniques are often used.

Two of the MC methods used involve either unisims or
multisims to determine the systematic error within each
data bin. In the unisim method, the systematic parameters
are varied one at a time by one standard deviation, each
parameter corresponding to a MC run. In the multisim
method, each MC run has all of the parameters varied; the
amount of variation is chosen from the expected distribu-
tion of each systematic parameter, usually assumed to be a
normal distribution.
It is assumed in this note that the errors in bins have a

linear dependence on the values of the deviations of the
systematic parameters from the assumed values. If non-
linear effects are important then a more sophisticated
analysis is needed [1].
Define:

� For the unisim method, an MC run is made with the
value of all systematic parameters set to their best
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Abstract

Hypothesis tests for the presence of new

sources of Poisson counts amidst 

background processes are frequently

performed in high energy physics (HEP), 

gamma ray astronomy (GRA), and other

branches of science. While there are 

conceptual issues already when the mean

rate of background is precisely known, the issues are even more difficult when

the mean background rate has non-negligible uncertainty. After describing a

variety of methods to be found in the HEP and GRA literature, we consider in

detail three classes of algorithms and evaluate them over a wide range of

parameter space, by the criterion of how close the ensemble-average Type I error

rate (rejection of the background-only hypothesis when it is true) compares with

the nominal significance level given by the algorithm. We recommend wider use

of an algorithm firmly grounded in frequentist tests of the ratio of Poisson means,

although for very low counts the overcoverage can be severe due to the effect of

discreteness. We extend the studies of Cranmer, who found that a popular

Bayesian-frequentist hybrid can undercover severely when taken to high

Z-values. We also examine the profile likelihood method, which has long been

used in GRA and HEP; it provides an excellent approximation in much of the
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Abstract

For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic

parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method,1 the

systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim

method (see footnote 1), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution

of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is

derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an

individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of

events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim

model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case,

the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be

made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can

have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a

factor of k2.

r 2006 Elsevier B.V. All rights reserved.

PACS: 2.50.Ng; 2.70.�c; 2.70.Uu; 7.05.Kf

Keywords: Systematic errors; Monte Carlo

1. Introduction

In many experiments there are a number of systematic
error parameters. If the experimental data is divided into a
set of bins, the effect of a change in a given systematic
parameter on a given data bin can be quite complicated.
For example, in a visual detector, the effect of a change in
an optical model parameter on the number of events of a
given type in a data bin may not be directly calculable.
Monte Carlo (MC) techniques are often used.

Two of the MC methods used involve either unisims or
multisims to determine the systematic error within each
data bin. In the unisim method, the systematic parameters
are varied one at a time by one standard deviation, each
parameter corresponding to a MC run. In the multisim
method, each MC run has all of the parameters varied; the
amount of variation is chosen from the expected distribu-
tion of each systematic parameter, usually assumed to be a
normal distribution.
It is assumed in this note that the errors in bins have a

linear dependence on the values of the deviations of the
systematic parameters from the assumed values. If non-
linear effects are important then a more sophisticated
analysis is needed [1].
Define:

� For the unisim method, an MC run is made with the
value of all systematic parameters set to their best
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Probability: Relation to Statistics

Statistics is to a large extent the inverse problem of Probability

Probability:
Know parameters that describe theory⇒ predict probability of result

Statistics:
Know result⇒ extract information on the parameters and/or the theory
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Probability:

b-tagging efficiency is 97% ⇒
P (tag 65 ≤ n ≤ 72 out of N = 75 b-jets) = 39.165%

Statistics:

b-tagging algorithm selects 73 out of 75 b-jets.
What can we say about the algorithm efficiency?

Well, we can say it’s in [91.8,99.5] with 90% CL

or in [93.9,99.1] with 68% CL, that is ε = 97.3+1.8
−3.4
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Binomial

Something very common in HEP:
An experiment of probability p is repeated N times.

Binom (k |N,p) =

(
N
k

)
pk (1−p)N−k , σ(k) =

√
Var(k) =

√
N p (1−p)

Examples:

Coin tossing!
Efficiencies (detector, method, selection)
Branching Ratios
Asymmetries
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Poisson

Limit of binomial when N →∞ and p → 0 with N · p = µ finite

Poiss (k |µ) =
e−µµk

k !
σ(k) =

√
µ

LOTS of examples.

Any counting observable in colliders.

For instance, in LHC:

N = 1.30× 10+22 (p-p crossings per bunch)

p = 1.93× 10−21 (production of a minbias event)

µ = N · p = 25 (av. minbias per bunch crossing)
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Actually the number of p per bunch is Poissonian itself because there
is a tiny probability that a proton ends up in a bunch out of a huge
number of starting protons.

But at least somewhere we start with a true binomial experiment with
(large) fixed N:

The bottle where
it all starts ...
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But don’t need to go up to N = 1024!
At N = 30 Poisson and Binomial already equivalent.

K.K. Gan L2: Binomial and Poisson 10
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For large N: Binomial distribution looks like a Poisson of the same mean
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Binomial→ Poisson, in addition to “large” N, requires

10
N

. p . 1− 10
N

And we basically always forget about binomial errors,
unless p gets very close to 0 or 1:

Example
75 events out of 75 pass a given cut ⇒ ε = 100%

With what error?

ε = 1 in σ =
√

N ε (1−ε) yields σ = 0

In this case the result is [0.976,1.0] @68% CL

î Need Confidence Intervals,
î A recipe for taking them into account in fits,
î No χ2 fit, but maximum likelihood...
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Multinomial

Generalization of the Binomial distribution.

NT repetitions of an experiment with n possible outcomes.

Most important example: Histogram with n bins and NT total entries

Mult (k |NT,p) =
NT!

k1!k2! · · · kn!
pk1

1 pk2
2 · · · pkn

n , σ(ki) =
√

NT pi (1− pi)

ki is the number of events on the i-th bin,
n∑

i=1

ki = NT.

pi is the probability for an event to fall on the i-th bin,
n∑

i=1

pi = 1.
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Composition of Binomial and Poisson

A Binomial experiment: Binom (k |N,p)

but N itself a Poisson variable: Poiss (N |µ)

=⇒ k is Poiss (k |µp)

Example:

The number k of t t̄ triggered on a sample N is Binom (n |N, ε)

The number N of t t̄ pairs during Run2a is Poiss (N |σL)

=⇒ k is Poiss (n | εσL)
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Composition of Multinomial and Poisson

A multinomial experiment, Mult (ki |N,pi),

where N itself is a Poisson variable Poiss (N |µ).

=⇒ ki are n independent Poisson variables

ki are Poiss (ki |µpi) ⇒ σ(ki) =
√

E(ki)

î The number of entries in each bin of an histogram is Poisson.
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Joint Distribution of Poisson variables

Joint probability of two Poisson {x , y}, is the product of single Poisson
z = x + y times a Binomial for observing x events in z trials.

Poiss (x |µ)× Poiss (y | ν) =

=
e−µ µx

x!
× e−ν νy

y !

=
e−µ µx

x!
× e−ν νz−x

(z − x)!

=
e−(µ+ν) (µ+ ν)z

z!
× z!

x! (z − x)!

( µ

µ+ ν

)x (
1− µ

µ+ ν

)z−x

= Poiss (z |µ+ ν) × Binom (x | z, µ

µ+ ν
)
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Application to test of Poisson ratios

Measure

{
n P in the peak region n P ∼ Poiss (s + b)

n C in control region (“sidebands”) n C ∼ Poiss (τb)

with τ the ratio of expected backgrounds in control and peak region

Suppose we want to test H0 : s = 0 via n C/n P ≈ τ .

But if s = 0, n P ∼ Poiss (b) and n C ∼ Poiss (τb),

or n P + n C ∼ Poiss (b + τb) and n p ∼ Binom (n P + n C,
1

1+τ )

The fraction of measured events that are in the “peak” region,
n P/(n P + n C), is a Binomial variable that measures 1

1+τ

î Test on ratio of Poisson variables is test on a Binomial.
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Story of a rediscovery ...

This standard method was elucidated for Botanics
(testing clover seed for dodder) by
Przyborowski and Wilenski, Biometrika 31 (1940) 313

and generalized for Zoology (studying salmon fry migration)
Chapman, Ann. Inst. Stat. Math. (Tokyo) 4 (1952) 45

The same result was obtained in the HEP community by
F. James, M. Roos, Nucl. Phys. B 172 (1980) 475.
“Errors on Ratios of Small Numbers of Events”

and in the GRA community
N. Gehrels, Astrophysical Journal, 303 (1986) 336
“Confidence limits for small numbers of events in astrophysical data”
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Chi-square

y ≡ x2:

If x ∈ (−∞,∞) is x ∼ N(0,1)

then y ∈ [ 0,∞) is y ∼ χ2(1).

For n independent xi ∼ N(0,1): y ≡∑n
i x2

i ⇒ y ∼ χ2(n).

The exponent in the n-dim multinormal

f (x) =
1√

(2π)n|V | exp
[
−1

2
(x − µ)TV−1(x − µ)

]
is itself a χ2(n) random variable.
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Central limit theorem

Given 2 random variables x1 and x2, its sum y = x1 + x2

will be a new random variable with a different distribution

Example: the sum of two flat distributions is the triangular distribution.

Example 2:

=⇒
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Sum of n independent random xi , with E(xi) = µi and Var(xi) = σ2
i .

tends to a N(µ, σ), with µ =
∑n

i µi and σ2 =
∑n

i σ
2
i
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Central limit theorem: Special cases

Sum of Binomials with equal p is Binomial:

Binom (n1,p) + Binom (n2,p) = Binom (n1 + n2,p)

=⇒ Binom (n,p)→ N (np,
√

np(1− p) ) for large n

Sum of Poissonians is Poisson:

Poiss (µ1) + Poiss (µ2) = Poiss (µ1 + µ2)

=⇒ Poiss (µ)→ N (µ,
√
µ ) for large µ.

Sum of Chi-squares is Chi-square:

χ2(n1) + χ2(n2) = χ2(n1 + n2)

=⇒ χ2(n)→ N (n,
√

2n ) for large n.
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The typical analysis we face is composed of roughly four steps

Physics language Statisticians terminology

“Best fit” of parameters Point estimation

Errors on the parameters Confidence region (at given C.L.)

Judging quality of the fit Goodness-of-fit testing

Compare to theory Hypothesis testing (at significance level)
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Point Estimation
A random variable depends on a parameter θ: f (x | θ)

By measuring a sample x = {x1, x2, . . . , xn}
we want to infer the value of θ.

An estimator θ̂ of the parameter θ

î is a random variable,

î function of the sample x : θ̂ = θ̂ (x1, . . . , xn)

î that can have the following properties: Consistency, Bias,
Efficiency, Sufficiency, Robustness

Consistency (for an infinite sample):

lim
n→∞

θ̂ = θ

.
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Bias

Bias is defined for a finite sample: b ≡ E(θ̂)− θ
An estimator is unbiased if E(θ̂) = θ

Classical example: Two consistent estimators for σ2

S2 =
1
n

∑
i

(xi − x̄)2 biased estimator with b = −σ
2

n

s2 =
1

n − 1

∑
i

(xi − x̄)2 unbiased
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Efficiency

There can be numerous consistent unbiased estimators of θ in f (x | θ):

θ̂1, θ̂2, θ̂3, with different variances.

There is a minimum attainable variance given by Cramer-Rao bound:

∀ θ̂(x) with E(θ̂) = θ :

Var(θ̂) ≥ σ2
min =

1

E
[(

∂
∂θ

∑
i log f (xi | θ)

)2
]

Efficiency θ̂ ≡ σ2
min

Var(θ̂)
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Example: xi ∼ N(µ, σi)

n measurements of same physical quantity, different errors.

Three unbiased estimators of µ:

µ̂2(x) =

∑
(xi/σ

2
i )∑

(1/σ2
i )

µ̂1(x) =

∑
(xi/σi)∑
(1/σi)

µ̂0(x) =

∑
xi

n

σ(µ̂2) < σ(µ̂1) < σ(µ̂0)

µ̂2 is 100% Efficient only for xi gaussian,

Sufficiency: we don’t loose information when replacing the n
measurements x , by the sole number θ̂(x).

Robustness: not unduly affected by small departures from model
assumptions (e.g., insensitivity to what goes on at the tails of the
distribution)
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The likelihood function

Random variable that depends on θ: f (x | θ)

The probability to obtain the n independent measurements {xi} is

f (x | θ) =
n∏

i=1

f (xi | θ)

The likelihood function is exactly this same expression,

but thought as a function of θ, given the measurements {xi}

L (θ |x) or L (x | θ) ≡
n∏

i=1

f (xi | θ)

The notation L stresses that we mean fixed data {xi}.
L (θ |x) in not a probability density for θ:

∫
L (θ |x) dθ 6= 1
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Maximum likelihood estimator

Obtain the estimator θ̂ by maximizing L :

∂L (θ | xi)

∂θ

∣∣∣∣
θ=θ̂

= 0

Solution of this equation (analytical or numerical) yields θ̂ = θ̂(x).

Properties:

ML estimators are consistent.
ML will produce a sufficient, 100% efficient estimator, if it exists.
ML estimators are asymptotically 100% efficient, sufficient and
unbiased.



Point Estimation Method of least squares R.Piegaia HCPSS08/Statistics 31

Method of least squares

When the probability f (x |θ) is gaussian, the maximum likelihood
principle yields the method of least squares, also known as
“minimizing” the χ2 (square of a gaussian)

L (x | θ) = C
n∏

i=1

e−
1
2

“
xi−µ

σ

”2

=⇒ log L = −1
2

n∑
i=1

(
xi − µ
σ

)2

+ C’

Maximizing L equals minimizing the sum of gaussians squared.

If f (x |θ) is not gaussian, one can still apply least squares.

Gauss-Markov Theorem: Among all unbiased estimators that are
linear in the data (gaussian or not gaussian), the Least Squares
method produces the estimator with smallest variance.
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The second step in you job, is to find the error

on the parameter you have estimated

Confidence Interval
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Confidence Interval: Simple gaussian case

Random variable x with gaussian distribution N(x |µ, σ)

Assume that the precision of the instrument, σ is known.

Perform a measurement and obtain x . Probability then states

P ( µ− σ ≤ x ≤ µ+ σ) = 0.6827 ≈ 0.68

But

µ− σ ≤ x ⇒ µ ≤ x + σ and x ≤ µ+ σ ⇒ x − σ ≤ µ

Then

P ( x − σ ≤ µ ≤ x + σ) = 0.68
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Last equation again:

P ( x − σ ≤ µ ≤ x + σ) = 0.68

This doesn’t mean that µ has a 68% probability of being in x ± σ.

µ is NO random variable, it is a FIXED parameter.

Here [x − σ, x + σ] is a random interval,

that will contain the fixed parameter µ, 68% of the time .

This is the frequentist interpretation of “error”

We write x ± σ and x ± 2σ meaning 68% and 95% CL intervals.
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Neyman’s construction

It is not always possible to isolate analytically the parameter of interest.

For instance, we have a n measurements xi ∼ N (µ, σ).

Want to estimate σ2 with its error (confidence region at 68% CL)

Use the well known unbiased estimator

s2 =
1

n − 1

n∑
i

(
xi −

∑
xi

n

)2

To get the error need the distribution of the random variable s2.

xi ∼ N(µ, σ) =⇒ (n − 1) s2

σ2 =
1
σ2

n∑
i

(xi − x̄)2 ∼ χ2
n−1

Note that the distribution of s2 depends on the unknown parameter σ2
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For each σ2, get s2
d and s2

u :
∫ s2

d
0 χ2

n−1 du = 0.16
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s2
u
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n−1 du = 0.16
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Coverage

By construction, for all values of the unknown σ2:

P
(
σ2 ∈ [σ2

d , σ
2
u ]
)

= 0.68 ∀σ2

This expresses that the “confidence belt” we built has coverage:

A method is said to yield a 100α% Confidence Interval if,
were the experiment to be repeated many times,

the resulting intervals would include (or cover) the true parameter
at least 100α% of the time,

no matter what the value of the true parameter is.

Coverage is, in the frequentist approach, the main property
which confidence intervals have to fulfill.
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The construction of the confidence belt is far from unique.

In the example we have built the “central” C.I.

one could choose the “shortest”, or upper, or lower, limits.

The confidence belt depends also on which estimator
you choose for your measurement.

Some choices for classical confidence intervals

central interval P(x ≤ xd | θ) = P(x ≥ xu | θ) = (1− α)/2
equal probability densities f (xd | θ) = f (xu | θ)
minimum size θhigh − θlow is minimum
symmetric θhigh − θ̂ = θ̂ − θlow
upper limit θlow = −∞
lower limit θhigh = +∞
likelihood ratio ordering f (xd | θ)/f (xd | θbest) = f (xu | θ)/f (xu | θbest)
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A few more confidence belts for free ...
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Confidence Interval: Two-dimensional case
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Confidence Interval near a bound
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Central 68% confidence belt for a gaussian N (µ,1) when for physics

reasons we know µ ≥ 0 (like a mass or a production ratio)

∀ µ ≥ 0, obtain [x1(µ), x2(µ)] as P(x < x1 |µ) = P(x > x2 |µ) = 0.16.



Confidence Interval Near a bound R.Piegaia HCPSS08/Statistics 42

Measured x
-2 -1 0 1 2 3 4

 o
f 

th
e 

g
au

ss
ia

n
µ

P
ar

am
et

er
 

0

1

2

3

4

5

6

If measure: x = +3.0 =⇒ 2 < µ < 4 at 68% CL
If measure: x = +0.8 =⇒ 0 < µ < 1.8 at 68% CL
If measure: x = −0.8 =⇒ 0 < µ < 0.2 at 68% CL
If measure: x = −1.5 =⇒ Empty C.I at 68% CL

If you dislike these results, means you’re a potential
Bayesian!
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IS THIS WRONG?

Nope.

Frequentists say that in 68% of the cases your interval

contains the true value of µ (remember coverage?)

This means 32% of the cases IT WILL NOT.

If you got an empty interval: TOO BAD, you fell in the unlucky 32%!

Trouble is you KNOW you were unlucky and you don’t like it
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And what about 0 < µ < 0.2 with 68% C.L.?

How come we got so precise in an experiment when σ = 1?

Answer: It’s not supposed to mean that you have 68% belief
that the true µ is in your interval.

It doesn’t say anything about your particular interval.
It says something about the set of CI of experiments you didn’t do.

In fact, in cases where µ is physically within a bounded domain,
you could get a 68% CI that covers the whole domain!

Imagine publishing:

The branching ratio is between 0 and 1 with 68% CL !
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The Bayesian way

Bayesians on the contrary do MEAN that

if you say 0 < µ < 0.2 (68% C.L.)

then it’s because you are ready to bet

with odds 68/32 (∼2/1) that µ IS in the interval.

And if your CI covers the whole domain,

for bayesians that is a 100% CL.

Of course in Bayesian statistics you can never get an empty interval.
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Then ...

The price to pay is that you have to think of the charge of the electron
as a random variable. But that’s not the only price.

“Frequentists use impeccable logic to deal with an issue of no interest
to anyone”

“Bayesians address the question everyone is interested in, by using
assumptions no-one believes”



Confidence Interval The Bayesian way R.Piegaia HCPSS08/Statistics 46

Then ...

The price to pay is that you have to think of the charge of the electron
as a random variable. But that’s not the only price.

“Frequentists use impeccable logic to deal with an issue of no interest
to anyone”

“Bayesians address the question everyone is interested in, by using
assumptions no-one believes”



Confidence Interval The Bayesian way R.Piegaia HCPSS08/Statistics 46

Then ...

The price to pay is that you have to think of the charge of the electron
as a random variable. But that’s not the only price.

“Frequentists use impeccable logic to deal with an issue of no interest
to anyone”

“Bayesians address the question everyone is interested in, by using
assumptions no-one believes”



Confidence Interval The Bayesian way R.Piegaia HCPSS08/Statistics 46

Then ...

The price to pay is that you have to think of the charge of the electron
as a random variable. But that’s not the only price.

“Frequentists use impeccable logic to deal with an issue of no interest
to anyone”

“Bayesians address the question everyone is interested in, by using
assumptions no-one believes”



Confidence Interval The Bayesian way R.Piegaia HCPSS08/Statistics 46

Then ...

The price to pay is that you have to think of the charge of the electron
as a random variable. But that’s not the only price.

“Frequentists use impeccable logic to deal with an issue of no interest
to anyone”

“Bayesians address the question everyone is interested in, by using
assumptions no-one believes”



Confidence Interval Discrete case: Poisson R.Piegaia HCPSS08/Statistics 47

Discrete case: Poisson process with background

Observe n events, from unknown signal µ and background b = 3

P(n |µ) = Poiss (n |µ+ b) =
e−(µ+b) (µ+ b)n

n!

Confidence belt at 100α% CL:
for each µ find [n1,n2] such that P (n ∈ [n1,n2] |µ) = α

Central 90%: P(n < n1 |µ) = 0.05 and P(n > n2 |µ) = 0.05
Upper 90%: P(n < n1 |µ) = 0.10

Let’s look at n1 for the upper limit

0.10 = P (n < n1 |µ) =

n1−1∑
n=0

e−(µ+3) (µ+ 3)n

n!
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Since n1 is discrete, only have exact solutions for certain µ.

0.10 = P (n < n1 |µ)

n1 = 1 : 0.10 = e−(µ+3) × 1 =⇒ no solution

n1 = 2 : 0.10 = e−(µ+3) × [1 + (µ+ 3)
]

=⇒ µ = 0.88972

n1 = 3 : 0.10 = e−(µ+3) × [1 + (µ+ 3) + 1
2(µ+ 3)2] =⇒ µ = 2.32232

Exact coverage is not possible: either “overcover” or “undercover”.

Avoid undercoverage by replacing

P (n ∈ [n1,∞) |µ) = 0.90 −→ P (n ∈ [n1,∞) |µ) ≥ 0.90

Thus the choice is

0.0 ≤ µ < 0.88972 ⇒ n1 = 1
0.88972 ≤ µ < 2.32232 ⇒ n1 = 2
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Minimum overcoverage 90% C.L. confidence belts for central
confidence intervals and upper limit, for unknown Poisson signal mean
and Poisson background b = 3.
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With the choice P (n ∈ [n1,n2] |µ) ≥ α
the intervals overcover and are conservative.

This is unavoidable for discrete distributions, but NO good.

A 90% C.I.interval should fail 10% of the time.

If want intervals that cover more than 90%, don’t add conservatism,

but rather go to higher confidence levels.
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Flip-Flopping

Ideal Physicist Real Physicist

Choose Strategy Examine data
Examine data Choose Strategy

Quote result Quote Result

Example:

You have a background of 3.2

Observe 5 events? No discovery: Quote one-sided upper limit

Observe 25 events? Discovery: Quote two-sided confidende interval.
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An experiment designed to measure a positive quantity;
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One may choose the following startegy:

If the result x is less than 3σ above zero, state an upper limit

If greater than 3σ, state a central confidence interval

If measured value is negative, be conservative and pretend measured
zero when calculating interval.
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For µ = 2.0, acceptance interval is x1 = 2-1.28 and x2 = 2+1.64,
P(x1 ≤ x ≤ x2 |µ = 2.0) = 85% < 90% ⇒ intervals undercover
They are not confidence intervals and certainly not “conservative” CI.
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Problems:
If you use the data to decide which plot to use, the hybrid method
can undercover
Your CI can be the empty set, or unreasonably “precise”.
“Worse” experiment with larger expected background can get
“better” CI.

Let’s discuss briefly this 3rd point.
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CASE I: Experiment expects no background, and observes no signal.

Frequentist 90% upper limit? Reject all values of µ for which

P (0 |µ) = Poiss (0 |µ) = exp (−µ) is less than 10%

P (0 |µreject) < 0.10
exp (−µreject) < 0.10

−µreject < log 0.10 = − log 10
µreject > 2.30

CASE II: Experiment expects mean background b, observes no signal.

P (0 |µ) = Poiss (0 |µ+ b) = exp
[−(µ+ b)

]
P (0 |µreject) < 0.10

exp
[−(µreject + b)

]
< 0.10

−(µreject + b) < log 0.10
µreject > 2.30− b
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90% CL frequentist and Bayesian upper limits
for n = 0 observed events and background expectation b

b = 0 b = 1 b = 2 b = 3 b = 4
Standard Classical 2.30 1.30 0.30 ∅ ∅

Unified Classical 2.44 1.61 1.26 1.08 1.01
Uniform Bayesian 2.30 2.30 2.30 2.30 2.30

The same problem that in the gaussian case.

If the experiment measures n = 0 it yields an empty set.

Should the experiment report “No result at 90% CL”?
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The “unified” approach: Feldman-Cousins

Back to the confidence belt for a Poisson experiment with b = 3

Consider the horizontal acceptance interval at signal mean µ = 0.5

The probability of obtaining n = 0 events is exp
[−(0.5 + 3)

]
= 0.03

Pretty low. But,compared to what?

If we got n = 0, our best bet for µ is µbest = 0

And for our best bet, the probability is P(0 |µbest) = 0.05

Now, 0.03 is not much smaller than 0.05, so µ = 0 is not that bad.

Take the ratio 0.03/0.05=0.607 as figure of merit for µ = 0 hypothesis.
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For each n let µbest be that value of µ which maximizes P(n |µ)

within the physically allowed region (non-negative µ).

Thus, µbest = max(0,n − b).

Choose what values of n to include in the confidence belt

following a merit ordering based on the ratio of likelihoods

R =
L (n |µ)

L (n |µbest)
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Construction of confidence belt for signal mean µ = 0.5
in the presence of known mean background b = 3.0.

n P(n |µ) µbest P(n |µbest) R rank U.L. central
0 0.030 0. 0.050 0.607 6
1 0.106 0. 0.149 0.708 5

√ √
2 0.185 0. 0.224 0.826 3

√ √
3 0.216 0. 0.224 0.963 2

√ √
4 0.189 1. 0.195 0.966 1

√ √
5 0.132 2. 0.175 0.753 4

√ √
6 0.077 3. 0.161 0.480 7

√ √
7 0.039 4. 0.149 0.259

√ √
8 0.017 5. 0.140 0.121

√
9 0.007 6. 0.132 0.050

√
10 0.002 7. 0.125 0.018

√
11 0.001 8. 0.119 0.006

√
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This process is repeated for each µ and yields
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Because of the discreteness of n, the acceptance region
contains a summed probability greater than 90%.
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Comparison of standard and unified confidence belts
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FC: Gaussian case near physical boundary

For a particular x , µbest is the physically allowed value of µ for which
P(x |µ) is maximum. This is µbest = max(0, x)

P(x |µbest) =

{
1/
√

2π, x ≥ 0
exp (−x2/2)/

√
2π, x < 0.

And the likelihood ratio R :

R(x) =
P(x |µ)

P(x |µbest)
=

{
exp (−(x − µ)2/2), x ≥ 0
exp (xµ− µ2/2), x < 0.

For a given µ, the acceptance interval [x1, x2] satisfies

R(x1) = R(x2) and
∫ x2

x1

P(x |µ) dx = α

Here the coverage is exactly 90% by construction.
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Comparison of standard and unified confidence belts
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FC does not solve the problem of shrinking CI for increasing
background

90% CL frequentist and Bayesian upper limits
for n = 0 observed events and background expectation b

b = 0 b = 1 b = 2 b = 3 b = 4
Standard Classical 2.30 1.30 0.30 ∅ ∅

Unified Classical 2.44 1.61 1.26 1.08 1.01
Uniform Bayesian 2.30 2.30 2.30 2.30 2.30

FC advocate to inform also the sensitivity of the experiment:

the average upper limit one would get from an ensemble of

experiments with your expected background and no true signal.
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Preliminary result from CDF on the top quark charge

f+ is fraction of pairs with top charge assigned to +2/3 via a jet charge
algorithm using the charge of the tracks associated to the jet weighted
by their momentum projection on the jet axis.

The measured value 0.87 yields a lower bound 0.6 @68% CL

Notice that a measurement above 1.2 would give extremely narrow
confidence intervals.
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Feldman and Cousins Summary

Avoids forbidden regions and empty results in a Frequentist way
Solves flip-flopping, it “unifies” central and upper limit belts
Makes us more honest (a bit)
Can lead to 2-tailed limits where you dont want claim discovery
Not easy to calculate and extend to systematic errors
Unphysically small CI still present
Shrinking CI for increasing background
Upper limits may tighten when including systematic errors
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An example

Ratio of top quark

branching fractions

R =
B(t →Wb)

B(t →Wq)

with q = b, s,d .

R > 0.61 at 95% CL

6

radiation in tt̄ events. The nominal values of ǫi for R = 1
are given in Table I. The value of ǫ0 (ǫ2) changes by -0.28
(0.09) as R changes from 0.5 to 1.

The expected event yield in each of the three tagged
subsets of each of the L+J and DIL samples is

N exp
i = N tt̄

inc · ǫi(R) + Nbkg
i , (1)

where Nbkg
i is the number of background events in the

i-tag subsample and N tt̄
inc is an estimate of the inclusive

number of tt̄ events in the sample, determined by

N tt̄
inc =

∑
i
(Nobs

i −Nbkg
i ) , (2)

where Nobs
i is the observed number of events in each sub-

sample. In this construction, the measured value of R
is independent of any assumption of the overall rate of
tt̄ production, and is thus sensitive only to the relative
numbers of tt̄ events with i tags.

The full likelihood is a product of independent likeli-
hoods for the L+J and DIL samples. Each likelihood is a
product of Poisson functions comparing Nobs

i to N exp
i for

each value of i, multiplied by Gaussian functions which
incorporate systematic uncertainties in the event-tagging
efficiencies and backgrounds, taking into account the cor-
relations across the different subsamples. These include
correlations in the event-tagging efficiencies through the
single-jet tagging efficiencies; in the common methodol-
ogy of the a priori estimates in the tagged L+J samples;
and in the overall normalization of the DIL backgrounds.
There are a total of five free parameters in the likelihood
to account for these systematic uncertainties.

The resulting likelihood as a function of R is
shown in Figure 2, along with the negative loga-
rithm of the likelihood. We find a central value of
R = 1.12+0.21

−0.19(stat)+0.17
−0.13(syst). The dominant system-

atic uncertainties arise from the uncertainty on the back-
ground measurement in the 0-tag L+J sample (+0.14

−0.11) and
from the overall normalization of the tagging efficiencies
(+0.09
−0.06). Taken separately, the two final states of tt̄ give

consistent results for R; the L+J sample alone yields
R = 1.02+0.23+0.21

−0.20−0.13, and the DIL sample alone yields
R = 1.41+0.46+0.17

−0.40−0.13. These R results are consistent with
the SM expectations.

The ratio R can only take on physical values between
zero and unity. We use the Feldman-Cousins prescrip-
tion [16] to set a lower limit on R. We generate ensem-
bles of pseudo-experiments for different input values of
R (Rtrue), and vary the input quantities of the analysis,
e.g. the background estimates, taking correlations into
account. Using the likelihood-ratio ordering principle, we
find the acceptance intervals as shown in Figure 2. With
our measured value of R, we find that R > 0.61 at the
95% CL.

Our lower limit on R is the strongest limit on this
top-quark branching ratio to date. Within the SM, R =

-ln
(L

)
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FIG. 2: The upper plot shows the likelihood as a function
of R (inset) and its negative logarithm. The intersections of
the horizontal line ln(L) = −0.5 with the likelihood define
the statistical 1σ errors on R. The lower plot shows 95%
(outer), 90% (central), and 68% (inner) CL bands for Rtrue

as a function of R. Our measurement of R = 1.12 (vertical
line) implies R > 0.61 at the 95% CL (horizontal line).

|Vtb|2
|Vtb|2+|Vts|2+|Vtd|2 , up to phase-space factors. Assuming
three generations and the unitarity of the CKM matrix,
the denominator is unity, and we estimate |Vtb| > 0.78
at 95% CL. All of our measurements of R are consistent
with the SM expectations.
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Bayes’ theorem

Conditional probability: given two events X and Y

P(X |Y ) ≡ P(X ∩ Y )

P(X )

Example, rolling dice:

P(n < 3 |n even) =
P(n < 3 ∩ n even)

P(n even)
=

1/6
3/6

=
1
3

Consider the sample space divided in exclusive events Yi :

Yi ∩ Yj = ∅, i 6= j and
∑

i

P(Yi) = 1

For any event X , Bayes theorem states:

P(Yk |X ) =
P(X |Yk ) P(Yk )∑

i(X |Yi) P(Yi)
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Example: Particles entering a threshold Cerenkov can be e, π or K ,

P(e) = 1% P(π) = 70% P(K ) = 29%

The probabilities that the detector fires (efficiencies) are

P(C |e) = 99% P(C |π) = 2% P(C |K ) = 1%

If a particle fired the detector, what’s the probability that it’s an e?

P(e |C) =
P(C |e)P(e)

P(C|e)P(e) + P(C|π)P(π) + P(C|K )P(K )

=
0.99× 0.01

0.99× 0.01 + 0.02× 0.70 + 0.01× 0.29
= 37%

Notice that is is a rather selective detector,

yet 63% of signals will be background (π and K ).
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To invert probabilities, P(A |B)→ P(B |A), need P(B)

P(C |e)→ P(e |C), need P(e)

P(A |B) 6= P(B |A)

P(C |e) 6= P(e |C)

Or, with a real life example:

A = female or male P(pregnant | female) ≈ 0.5%
B = pregnant or non-pregnant P(female |pregnant) ≫ 1%
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Bayes’ Theorem: Continuous version

Instead of discrete probabilities P(Y ), we have density functions f (y)

Conditional probability:

P(X |Y ) ≡ P(X ∩ Y )

P(X )
Continuous−−−−−−→

case
f (x | y) ≡ f (x , y)

f (x)

Bayes Theorem:

P(Yk |X ) =
P(X |Yk ) P(Yk )∑

i P(X |Yi) P(Yi)
Continuous−−−−−−→

case
f (y | x) =

f (x | y) f (y)∫
f (x | y) f (y) dy
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Example: The 200 GeV CERN muon beam had an approximately
gaussian energy distribution with µb = 200 GeV and σb = 5 GeV.

f (Eb) =
1√

2πσb
exp
[
−1

2

(Eb − µb

σb

)2
]

The EMC spectrometer measured the energy of each incoming muon
with a gaussian uncertainty of 0.5% (σb = 1 GeV),

f (Em |Eb) =
1√
2π

exp
[
−(Em − Eb)2

2

]
Question: For a given event the measured energy was Em = 208 GeV.
What can we say of the true energy Eb after the measurement?

f (Eb |Em) =
f (Em |Eb) f (Eb)∫

f (Em |Eb) f (Eb) dEb

Answer: f (Eb |Em) ∼ N (207.5,0.9).
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Bayesian use of Bayes’ Theorem

Parameter µ of an f (x |µ) is regarded as a random variable itself.
Apply Bayes:

f (µ | x) =
f (x |µ) f (µ)∫
f (x |µ) f (µ) dµ

to calculate how our knowledge of µ improves after measuring x

f (µ)
Measurement−−−−−−−−−→ f (µ | x)

f (µ): “degree of belief” on the physical magnitud before experiment
Write it π(µ), and call it prior, to emphasize this interpretation

f (µ | x): posterior, describes knowledge after the experiment is done
Sometimes written as p(µ) to emphasize interpretation

p(µ) = f (µ | x) =
f (x |µ)π(µ)∫

f (x |µ)π(µ) dµ
∝ f (x |µ)π(µ) = L (x |µ)π(µ)
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Choice of prior

Informative (subjective):

Previous measurement is µ = a± b: take π(µ) ∼ N(µ,b)

Uninformative (objective):

π(µ) = const

However there is arbitrariness in how ignorance is parametrized

Should we choose π(µ) flat in µ, in 1/µ, or in µ2?

Use decay constant λ or the τ = 1/λ?

Use mν or m2
ν , the actual observable?

Statisticians investigate theoretically motivated uninformative priors

(e.g., scale independence in Poisson if choose 1/µ)
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The preferred choice in HEP is π(µ) = const

f (µ | x) ∝ L (x |µ)π(µ)

The posterior becomes the likelihood, suitable normalized.

L (x |µ) is promoted to a probability density on x and on µ.

Note:

how the symmetric notation L (x |µ)↔ L (µ | x) comes handy,

the parallelism with conditional probability
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What’s the attitude of physicists?

Physicists want the data to “speak for themselves”,
and choosing one’s favorite prior is not precisely in this direction.

But even in frequentist procedures there is arbitrariness.
What estimator to choose? How to construct your confidence belt?
There are different frequentist results for the same data...

A growing attitude towards Bayesian approaches is:
Why not?, if one can show that it provides adequate coverage...

This is the “pragmatic” approach. After all, Bayesian methods:
1. easily account for boundaries: set π(µ) = 0 for µ unphysical
2. are handy for treating uncertainty in nuisance parameters.
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Poisson upper limit

We observe n events from a Poisson distribution with µ = s ε+ b

L (n | s) = e−(sε+b)(sε+ b)n/n!

The posterior results p (s | ε,b,n) =
1
N e−εs(εs + b)n π(s)

With normalization N =

∫ ∞
0

e−εs(εs + b)n π(s) ds

Note that for n = 0, the posterior becomes independent of ε and b,
and for uniform prior (α = 1) it is simply the exponential.

For uniform prior, ε = 1 and b = 0, Bayesian upper limits are
identical to those obtained with Neyman’s frequentist construction.
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For Confidence Intervals there is the usual freedom to decide how to
divide your (1− α)% probability between the lower and upper tails
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Binomial confidence interval

Estimate efficiency ε = n/N, from N trials and n successes

p (ε |n,N) =
Binom (n | ε,N) π(ε)∫
Binom (n | ε,N) π(ε) dε

For uniform prior π(ε) = 1 the integral in the denominator is∫ 1

0

N!

(N − n)! n!
εn (1− ε)N−n dε =

1
N + 1

yielding the posterior

p (ε |n,N) = (N + 1) Binom (n | ε,N)
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The posterior distribution for N = 10, and n = 0,1,2

Figure 1: Binomial posterior density in the eÆ
ien
y � for the 
ases N = 10; n = 0; 1; 2.2 Bayesian posterior densityThe problem 
an be approa
hed with Bayesian methods in a straightforward way. The �rststep is to derive a posterior density in the unknown parameter �. Sin
e from Bayes' Theoremwe have P (AjBC) = P (BjAC)P (AjC)P (BjC) (3)we 
an write in our 
ase P (�jn;N) = P (nj�;N)P (�jN)P (njN) : (4)Here P (�jN) is the prior probability density in � whi
h we 
an take to be uniform, and P (njN)is the probability of observing n, given N , for any value of �. Sin
e any allowed value ofn(=0,1,...,N) is thus equally likely a priori, we haveP (njN) = 1N + 1 : (5)It is a remarkable fa
t that from the known properties of the beta distribution we 
an writeZ 10 �n(1 � �)N�nd� = n!(N � n)!(N + 1)! : (6)This guarantees that our posterior density in �P (�jn;N) = (N + 1)P (nj�;N) (7)is in fa
t properly normalized to unity.Figure 1 shows the posterior density as a fun
tion of � for the 
ases N = 10; n = 0; 1; 2. Inthese (as in every 
ase) the maximum posterior density in � in fa
t o

urs at � = n=N . The�gure also illustrates the asymmetry present in the limit n! 0.2

Obtain the CI [εd, εu] at 100α% CL via
∫ εu

εd

f (ε |n,N) dε = α
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Other methods

Bayesians or frequentists claim some self-consistent justification for
their approach, Other methods are more ad hoc. Hence, they do not
usually achieve either coverage or Bayesian credibility.

The two method most used are those implemented by MIGRAD/HESSE

and by MINOS in the MINUIT package.

It is interesting to see how the statistics requirements of the HEP
community evolved since the early 90s, as ahown in this excerpt from
the MINUIT writeup:

MINOS is designed to calculate the correct errors in
all cases, especially when there are non-linearities
as described above...
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Log-likelihood intervals

Have n data points xi with p.d.f. f (xi | θj) depending on k parameters θj .

The ML estimators satisfy L (θ̂j | xi) = L max.

The ratio of likelihoods is a random variable

λ(θj) ≡
L (θj | xi)

L (θ̂j | xi)

The distribution of −2 lnλ (θ) tends asymptotically to χ2
k

−2 lnλ (θ) = Q2

ln L (θ) = ln L (θ̂)− Q2

2
with Q2 ∼ χ2

k
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Any departure of θj from θ̂j causes Q2 to increase from 0.

We can calculate this probability

P (0 ≤ Q2 ≤ a) =

∫ a

0
χ2

k (u) du = α

Then, the α% CL interval is the region in θ space that satisfies

ln L (θ) ≥ ln L max − a
2

For one parameter the limits of the interval [θu, θd ] are the solution of

ln L (θ) = ln L max − a
2

where
∫ a

0
χ2

1 du = α

a = 1,4,9 for α = 68.27,95.45,99.73, that is 1σ, 2σ, 3σ errors
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6

radiation in tt̄ events. The nominal values of ǫi for R = 1
are given in Table I. The value of ǫ0 (ǫ2) changes by -0.28
(0.09) as R changes from 0.5 to 1.

The expected event yield in each of the three tagged
subsets of each of the L+J and DIL samples is

N exp
i = N tt̄

inc · ǫi(R) + Nbkg
i , (1)

where Nbkg
i is the number of background events in the

i-tag subsample and N tt̄
inc is an estimate of the inclusive

number of tt̄ events in the sample, determined by

N tt̄
inc =

∑
i
(Nobs

i −Nbkg
i ) , (2)

where Nobs
i is the observed number of events in each sub-

sample. In this construction, the measured value of R
is independent of any assumption of the overall rate of
tt̄ production, and is thus sensitive only to the relative
numbers of tt̄ events with i tags.

The full likelihood is a product of independent likeli-
hoods for the L+J and DIL samples. Each likelihood is a
product of Poisson functions comparing Nobs

i to N exp
i for

each value of i, multiplied by Gaussian functions which
incorporate systematic uncertainties in the event-tagging
efficiencies and backgrounds, taking into account the cor-
relations across the different subsamples. These include
correlations in the event-tagging efficiencies through the
single-jet tagging efficiencies; in the common methodol-
ogy of the a priori estimates in the tagged L+J samples;
and in the overall normalization of the DIL backgrounds.
There are a total of five free parameters in the likelihood
to account for these systematic uncertainties.

The resulting likelihood as a function of R is
shown in Figure 2, along with the negative loga-
rithm of the likelihood. We find a central value of
R = 1.12+0.21

−0.19(stat)+0.17
−0.13(syst). The dominant system-

atic uncertainties arise from the uncertainty on the back-
ground measurement in the 0-tag L+J sample (+0.14

−0.11) and
from the overall normalization of the tagging efficiencies
(+0.09
−0.06). Taken separately, the two final states of tt̄ give

consistent results for R; the L+J sample alone yields
R = 1.02+0.23+0.21

−0.20−0.13, and the DIL sample alone yields
R = 1.41+0.46+0.17

−0.40−0.13. These R results are consistent with
the SM expectations.

The ratio R can only take on physical values between
zero and unity. We use the Feldman-Cousins prescrip-
tion [16] to set a lower limit on R. We generate ensem-
bles of pseudo-experiments for different input values of
R (Rtrue), and vary the input quantities of the analysis,
e.g. the background estimates, taking correlations into
account. Using the likelihood-ratio ordering principle, we
find the acceptance intervals as shown in Figure 2. With
our measured value of R, we find that R > 0.61 at the
95% CL.

Our lower limit on R is the strongest limit on this
top-quark branching ratio to date. Within the SM, R =

-ln
(L

)
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FIG. 2: The upper plot shows the likelihood as a function
of R (inset) and its negative logarithm. The intersections of
the horizontal line ln(L) = −0.5 with the likelihood define
the statistical 1σ errors on R. The lower plot shows 95%
(outer), 90% (central), and 68% (inner) CL bands for Rtrue

as a function of R. Our measurement of R = 1.12 (vertical
line) implies R > 0.61 at the 95% CL (horizontal line).

|Vtb|2
|Vtb|2+|Vts|2+|Vtd|2 , up to phase-space factors. Assuming
three generations and the unitarity of the CKM matrix,
the denominator is unity, and we estimate |Vtb| > 0.78
at 95% CL. All of our measurements of R are consistent
with the SM expectations.

We thank the Fermilab staff and the technical staffs
of the participating institutions for their vital contribu-
tions. This work was supported by the U.S. Department
of Energy and National Science Foundation; the Italian
Istituto Nazionale di Fisica Nucleare; the Ministry of
Education, Culture, Sports, Science and Technology of
Japan; the Natural Sciences and Engineering Research
Council of Canada; the National Science Council of the
Republic of China; the Swiss National Science Founda-
tion; the A.P. Sloan Foundation; the Bundesministerium
für Bildung und Forschung, Germany; the Korean Sci-
ence and Engineering Foundation and the Korean Re-
search Foundation; the Particle Physics and Astronomy
Research Council and the Royal Society, UK; the Russian
Foundation for Basic Research; the Comision Interminis-
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One equation, two interpretations: µd ≤ µ ≤ µu

Frequentist

{
µd and µu known, but random
µ unknown but fixed

Bayesian

{
µd and µu known, and fixed
µ unknown and random
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