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What's the big deal about Probability and Statistics?

After all it is just mathematics, isn’t it?

Mathematics
@ Developped “long ago”
@ Can be easy ...

Linear Algebra
Elementary Calculus

@ Can be hard ...
Semicompact Lie Groups
Topological Hausdorff Spaces
@ but it is essentiall “done”:
XIX century, early XX century at the latest...




What's the big deal R.Piegaia HCPSS08/Statistics 3

Same thing when | studied Probability in school:
@ To a large extent “closed”
@ Fun
@ Basically applicable to gaming theory



What's the big deal R.Piegaia HCPSS08/Statistics 3

Same thing when | studied Probability in school:
@ To a large extent “closed”
@ Fun
@ Basically applicable to gaming theory

Statistics was somewhat different (and murkier..)
@ Basically simple sampling examples.
@ The 2 recipe.
@ Not at all like the clean Mathematics | was used to.



What's the big deal R.Piegaia HCPSS08/Statistics 3

Same thing when | studied Probability in school:
@ To a large extent “closed”
@ Fun
@ Basically applicable to gaming theory

Statistics was somewhat different (and murkier..)
@ Basically simple sampling examples.
@ The 2 recipe.
@ Not at all like the clean Mathematics | was used to.

And then | became an experimental high energy physicists.... J
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Lots of interesting recipes that help solve all kind of useful stuff.
Lots of unsolved problems: Far from closed or done.

Lots of activity of people trying to understand:

© why we do what we do
© how to do it better
© what to do next

In fact most of what | am going to tell in these three lectures comes
from papers published by physicists in the last 10 years.

PHYSICAL REVIEW D VOLUME 57, NUMBER 7 1 APRIL 1998
Unified approach to the classical statistical analysis of small signals

Gary J. Feldman
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousin's
Department of Physics and Astronomy, University of California, Los Angeles, California 90095



What's the big deal R.Piegaia HCPSS08/Statistics 5

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 41, NUMBER 8 AUGUST 2000

The statistical analysis of Gaussian and Poisson signals
near physical boundaries
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Statistical errors in Monte Carlo estimates of systematic errors ™

Byron P. Roe*

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
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Evaluation of three methods for calculating
statistical significance when incorporating a
systematic uncertainty into a test of the
background-only hypothesis for a Poisson process

Robert D. Cousins® E’ , James T. Linnemann® and Jordan Tucker®
=4
ADepartment of Physics and Astronomy, University of California, Los Angeles, CA

90095, USA bDepartment of Physics and Astronomy, Michigan State University,
East Lansing, MI 48840, USA
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Probability: Relation to Statistics
Statistics is to a large extent the inverse problem of Probability

Probability:
Know parameters that describe theory = predict probability of result

Statistics:
Know result = extract information on the parameters and/or the theory
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Probability:
b-tagging efficiency is 97% =
P (tag 65 < n < 72 out of N = 75 b-jets) = 39.165%

Statistics:

b-tagging algorithm selects 73 out of 75 b-jets.
What can we say about the algorithm efficiency?

Well, we can say it’s in [91.8,99.5] with 90% CL

or in [93.9,99.1] with 68% CL, thatis ¢ =97.37}%
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Something very common in HEP:
An experiment of probability p is repeated N times.

Binom (k | N, p) = (Q’)pku—p)N-k, o(k) = v/Var(k) = v/Np(i—p)

Examples:
@ Coin tossing!
@ Efficiencies (detector, method, selection)
@ Branching Ratios
@ Asymmetries
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Any counting observable in colliders.



RPiegaia HCPSS08/Statistics 10
Poisson

Limit of binomial when N — oo and p — 0 with N - p = p finite

k

Poiss (k | 11) = e_:!“ o(k) = Vi

LOTS of examples.

Any counting observable in colliders.
For instance, in LHC:

N =1.30x 10"22  (p-p crossings per bunch)
p=193x10"2"  (production of a minbias event)

u=N-p=25 (av. minbias per bunch crossing)
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Actually the number of p per bunch is Poissonian itself because there
is a tiny probability that a proton ends up in a bunch out of a huge
number of starting protons.

But at least somewhere we start with a true binomial experiment with
(large) fixed N:

The bottle where
it all starts ...
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But don’t need to go up to N = 10%*!
At N = 30 Poisson and Binomial already equivalent.

| | | | | |
0.5 1 T 1 1 . 0 . " " ; -
] 0.35
> B poisson p=1 ] 03
i 0 binomial N=3, p=1/31 o
= 1 2025 @ binomial N=10,p=0.1
fo) 1 = O  poisson u=1
® 1 £ oo
Q 1 8
o T 2 os Not much
x 1 & difference
1 0.1 between them!
] 0.05
~ 0

0.0 1.0 20 3.0 4.0

50 6.0

70
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Binomial — Poisson, in addition to “large” N, requires

10 10

<

And we basically always forget about binomial errors,
unless p gets very close to 0 or 1:

13
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10 peq 10
N

13
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And we basically always forget about binomial errors,
unless p gets very close to 0 or 1:

Example

75 events out of 75 pass agivencut = ¢ =100%
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Binomial — Poisson, in addition to “large” N, requires
10 10
< < —

And we basically always forget about binomial errors,
unless p gets very close to 0 or 1:

Example
75 events out of 75 pass agivencut = ¢ =100%
With what error?

e=1 in o=4/Ne(1—¢) yields o=0

In this case the result is [0.976,1.0] @68% CL

© Need Confidence Intervals,
© A recipe for taking them into account in fits,
> No x2 fit, but maximum likelihood...
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Multinomial

Generalization of the Binomial distribution.

Nr repetitions of an experiment with n possible outcomes.

Most important example: Histogram with n bins and Ny total entries

Nr!
Mult (k | Ny, p) = e Py P, alk) = v/Nepi (1= p)

n
k; is the number of events on the i-th bin, Z ki = Nr.
i=1

n
pj is the probability for an event to fall on the j-th bin, Zp,- =1.
i=1
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Composition of Binomial and Poisson

A Binomial experiment: Binom (k| N, p)
but N itself a Poisson variable: Poiss (N | 1)

= Kk is Poiss(k|up)

Example:
The number k of tt triggered on a sample N is Binom (n| N, ¢)

The number N of tt pairs during Run2a is Poiss (N | o L)

— Kk is Poiss(n|ecL)



Discrete distributions Composition of Multinomial and Poisson R.Piegaia HCPSS08/Statistics

Composition of Multinomial and Poisson

A multinomial experiment, Mult (ki | N, p;),

where N itself is a Poisson variable Poiss (N | i).

= k; are nindependent Poisson variables

ki are Poiss(ki|ppi)) = o(ki)=+VE(k)

© The number of entries in each bin of an histogram is Poisson.

16
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Joint Distribution of Poisson variables

Joint probability of two Poisson {x, y}, is the product of single Poisson
z = x + y times a Binomial for observing x events in z trials.

Poiss (x | ) x Poiss(y|v) =

e X e vy
s /J/ X

X! y!
_ e r X eV 7 X
X! (z—x)!
—(ptv) z I -
_ e (n+v)® z! ( 1t )X<1_ p )zx
z! xH(z—x)! \p+v w4 v

K

= Poiss(z|u + x  Binom (x| z,
(zlpn+v) (xlz.
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Application to test of Poisson ratios

np in the peak region np ~ Poiss(s+ b)

Measure
{nc in control region (“sidebands”) ¢ ~ Poiss(7b)

with 7 the ratio of expected backgrounds in control and peak region

18
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Application to test of Poisson ratios

np in the peak region np ~ Poiss(s+ b)
Measure ) i ) )

nc in control region (“sidebands”)  n¢ ~ Poiss(7b)
with 7 the ratio of expected backgrounds in control and peak region
Suppose we wanttotest Hy:s=0 via nc/np~r.
Butifs=0, np~ Poiss(b) and nc¢ ~ Poiss(7b),

or np+ nc ~ Poiss(b+7b) and n, ~ Binom(np + nc, 11)

The fraction of measured events that are in the “peak” region,
np/(ne + nc), is a Binomial variable that measures 11—

o Test on ratio of Poisson variables is test on a Binomial.

18
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Story of a rediscovery ...

This standard method was elucidated for Botanics
(testing clover seed for dodder) by

Przyborowski and Wilenski, Biometrika 31 (1940) 313

and generalized for Zoology (studying salmon fry migration)
Chapman, Ann. Inst. Stat. Math. (Tokyo) 4 (1952) 45

The same result was obtained in the HEP community by

F. James, M. Roos, Nucl. Phys. B 172 (1980) 475.
“Errors on Ratios of Small Numbers of Events”

and in the GRA community

N. Gehrels, Astrophysical Journal, 303 (1986) 336
“Confidence limits for small numbers of events in astrophysical data”

19
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Chi-square

y = X2 =
If x € (—o0,00)is x ~ N(0,1) .} ]
then y € [0,00) is ¥ ~ x3(1). N ]

For nindependent x; ~ N(0,1): y = Z,’-7 X2 = y~x3(n).

]

The exponent in the n-dim multinormal

_ 1 e \Tu-Tiy
f(x) = (27r)”|V|eXp 5 (X—p) V(X —p)

is itself a x2(n) random variable.
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Central limit theorem

Given 2 random variables x; and x», its sum y = x; + x»

will be a new random variable with a different distribution

Example: the sum of two flat distributions is the triangular distribution.

Example 2:
F 400 T
200 :
i BAAWA
oL 0
0 0.2 04 06 0.8 1 0 05 1 15 2

=
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Sum of n independent random x;, with E(x;) = x; and Var(x;) = o2.

tends to a N(, o), with 2 = 37 11; and o2 702

PSR A

0
0 0.2 04 006 0.8 0 05 1
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Sum of n independent random x;, with E(x;) = x; and Var(x;) = o2.
tends to a N(, o), with 2 = 37 11; and o2 702
400
200 i
B FM AN /\ A
0 0k
0 0.2 0.4 06 0.8 0O 05 1 15 2
400 ¢ 400
200 | 200
0 L ﬁ 0 7

0 1 2 S o 1 2 3 4 5
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Sum of n independent random x;, with E(x;) = x; and Var(x;) = o2.

tends to a N(, o), with 2 = 37 11; and o2 702
400 [
200 :
S AAWA
0 Q &
0.2 0.4 0.6 0.8 0 05 1 15 2
400 | 400
200 F 200
0 N Q
0 1 2 3 o 1 2 3 4 5
500 | '
250 F 500 | /j/fﬁN\R
0t 0L

22
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Central limit theorem: Special cases

@ Sum of Binomials with equal p is Binomial:
Binom(ny, p) + Binom (nz, p) = Binom (ny + ny, p)
= Binom(n,p) — N (np,/np(1 — p)) for large n

@ Sum of Poissonians is Poisson:
Poiss (11) + Poiss (u2) = Poiss (111 + p2)
—>  Poiss(p) — N(u, /1) for large f.

@ Sum of Chi-squares is Chi-square:
X2(m) + x2(n2) = x2(ny + n2)
—  x?(n) — N(n,v/2n) for large n.
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The typical analysis we face is composed of roughly four steps

Physics language Statisticians terminology
“Best fit” of parameters Point estimation
Errors on the parameters Confidence region (at given C.L.)

Judging quality of the fit Goodness-of-fit testing
Compare to theory Hypothesis testing (at significance level)



Point Estimation
A random variable depends on a parameter 6: f(x | 6)
By measuring a sample x = {xq, X2,..., Xp}
we want to infer the value of 6.
An estimator § of the parameter 6
© is a random variable,
= function of the sample x: 6 = 0 (x4, ..., Xn)

© that can have the following properties: Consistency, Bias,
Efficiency, Sufficiency, Robustness

Consistency (for an infinite sample):

lim 6 =0



Bias

Bias is defined for a finite sample: b= E(d) — 6

A

An estimator is unbiased if E(0) = ¢

Classical example: Two consistent estimators for o2

o2

= Z(Xi - )?)2 biased estimator with b = -

1
2 _ Y- :
s = E,- (xi — X)= unbiased

26
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Efficiency

27

There can be numerous consistent unbiased estimators of 6 in f(x | ):

0y, Bo, 63, with different variances.

There is a minimum attainable variance given by Cramer-Rao bound:

vA(x) with E(0)=0:

A 1
Var(9) > Ur%lin =
E[(& 31109 7(x10))°]

2
O min

Var()

Efficiency 0 =
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Example: x;j ~ N(u, o)
n measurements of same physical quantity, different errors.
Three unbiased estimators of pu:

> (xi/0?) Y (Xifoi) .

) =Sz MW= Sy =

o(fiz) < o(n) < o(ho)
fi2 is 100% Efficient only for x; gaussian,

Sufficiency: we don’t loose information when replacing the n
measurements X, by the sole number 6(x).

Robustness: not unduly affected by small departures from model
assumptions (e.g., insensitivity to what goes on at the tails of the
distribution)
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The likelihood function

Random variable that depends on 6: f(x | 6)
The probability to obtain the n independent measurements {x;} is

f(x|0) = Hf(x,ye

The likelihood function is exactly this same expression,
but thought as a function of 6, given the measurements {x;}

Z(0]x) or L(x|6) = f[f(x,-w)

i=1
The notation . stresses that we mean fixed data {x;}.

Z(01]x) in not a probability density for 0: [ .Z(6|x) df # 1
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Maximum likelihood estimator

Obtain the estimator # by maximizing .Z:

020 | xi)
gL \WViA) -0

00 0—d
Solution of this equation (analytical or numerical) yields § = A(x).

Properties:

@ ML estimators are consistent.

@ ML will produce a sufficient, 100% efficient estimator, if it exists.

@ ML estimators are asymptotically 100% efficient, sufficient and
unbiased.

30
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Method of least squares

When the probability f(x | @) is gaussian, the maximum likelihood
principle yields the method of least squares, also known as
“minimizing” the x2 (square of a gaussian)

1

n Xi—H 2 n o 2
2xl9)=c[[e (") —= lgz=-1 (x, u) Lo
i=1

2

; o
i=1

Maximizing . equals minimizing the sum of gaussians squared.
If f(x | @) is not gaussian, one can still apply least squares.
Gauss-Markov Theorem: Among all unbiased estimators that are

linear in the data (gaussian or not gaussian), the Least Squares
method produces the estimator with smallest variance.

31
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The second step in you job, is to find the error

on the parameter you have estimated

Confidence Interval
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Confidence Interval: Simple gaussian case

Random variable x with gaussian distribution N(x | x1, o)
Assume that the precision of the instrument, o is known.
Perform a measurement and obtain x. Probability then states

P(p—0 < x < u+o0)=0.6827 ~ 0.68
But
uw—o<x = p<x+oc and x<pu+oc = XxX—o<upu
Then

P(x—0 < p < x+0)=0.68
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Last equation again:
P(x—0c < pu< x+o0)=0.68
This doesn’t mean that ;1 has a 68% probability of being in x + o.

1 is NO random variable, it is a FIXED parameter.

Here [x — o, x + o] is a random interval,

that will contain the fixed parameter i, 68% of the time .
This is the frequentist interpretation of “error”

We write x + o and x &+ 20 meaning 68% and 95% CL intervals.



, .
Neyman’s construction

35

It is not always possible to isolate analytically the parameter of interest.

For instance, we have a n measurements x; ~ N (i, o).
Want to estimate o2 with its error (confidence region at 68% CL)

Use the well known unbiased estimator

(%)
Xi —
n—1 - n

To get the error need the distribution of the random variable s?.

n—1)
X,NN(M,U) — (7 = 22 ~ XI27—1

O'

Note that the distribution of s> depends on the unknown parameter 2
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2
For each 0%, get s and s2: [3¥ X2 4 du=0.16 [’ x2 ; du=0.16
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2
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2
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For each o2, get s7 and s2: Xn 1 du=016 [ x5 ;du=0.16
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Coverage

By construction, for all values of the unknown o2:

P(02 € [03,05]) —0.68 Vo?

This expresses that the “confidence belt” we built has coverage:

A method is said to yield a 100 o % Confidence Interval if,
were the experiment to be repeated many times,
the resulting intervals would include (or cover) the true parameter
at least 100 o % of the time,
no matter what the value of the true parameter is.

Coverage is, in the frequentist approach, the main property
which confidence intervals have to fulfill.
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The construction of the confidence belt is far from unique.

In the example we have built the “central” C.1.

one could choose the “shortest”, or upper, or lower, limits.

The confidence belt depends also on which estimator
you choose for your measurement.

Some choices for classical confidence intervals

central interval

equal probability densities
minimum size

symmetric

upper limit

lower limit

likelihood ratio ordering

Px <x4|0)=Px>x10)=(1—-a)/2
f(xa]0) = f(xu|0)
Ohigh — O1ow IS Minimum

Ohigh = +00
f(Xd ‘ 9)/f(xd | Hbest) = f(Xu | 9)/f(xu | Qbest)




A few more confidence belts for free ...
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A few more confidence belts for free ...
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Confidence Interval: Two-dimensional case

probability contour

confidence contour

D>
3

A 4
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Confidence Interval near a bound

Parameter p of the gaussian

1
Measured x

Central 68% confidence belt for a gaussian N (u, 1) when for physics
reasons we know > 0 (like a mass or a production ratio)
YV > 0, obtain [x1(u), Xo()] as P(x < x1 | 1) = P(x > X2 | n) = 0.16.
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If measure:
If measure:
If measure:
If measure:

Parameter p of the gaussian

x =+3.0
x =+0.8
x=-0.8
x=-15

1
Measured x

—
—
—
—

2<pu<4 at68%CL
0<pu<18 at68% CL
0<pu<0.2 at68% CL
Empty C.I at 68% CL

42
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Parameter p of the gaussian

2 3

1
Measured x

If measure: x = +3.0
If measure: x = +0.8
If measure: x = —0.8
If measure: x = —-1.5

2<pu<4 at68% CL
0<pu<18 at68% CL
0<pu<0.2 at68% CL
Empty C.I at 68% CL

LEel

A If you dislike these results, means you're a potential
.
Bayesian!



Confidence Interval Near a bound

IS THIS WRONG?



Confidence Interval Near a bound

IS THIS WRONG?  Nope.
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IS THIS WRONG? Nope.

Frequentists say that in 68% of the cases your interval

contains the true value of . (remember coverage?)
This means 32% of the cases IT WILL NOT.
If you got an empty interval: TOO BAD, you fell in the unlucky 32%!

Trouble is you KNOW you were unlucky and you don’t like it
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And what about 0 < u < 0.2 with 68% C.L.?
How come we got so precise in an experiment when o = 17?

Answer: It’'s not supposed to mean that you have 68% belief
that the true p is in your interval.

It doesn’t say anything about your particular interval.

It says something about the set of Cl of experiments you didn’t do.

In fact, in cases where  is physically within a bounded domain,
you could get a 68% CI that covers the whole domain!

Imagine publishing:

The branching ratio is between 0 and 1 with 68% CL !



el s
The Bayesian way

Bayesians on the contrary do MEAN that

if yousay 0 < u < 0.2 (68% C.L.)

then it’s because you are ready to bet

with odds 68/32 (~2/1) that . IS in the interval.

And if your CI covers the whole domain,
for bayesians that is a 100% CL.

Of course in Bayesian statistics you can never get an empty interval.



Confidence Interval The Bayesian way

Then ...
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Then ...

Why isn’t every physicist a Bayesian?

Robert D. Cousins
Department of Physics, University of California, Los Angeles, California 90024-1547

(Received 1 June 1994; accepted 3 November 1994)
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Then ...

Why isn’t every physicist a Bayesian?

Robert D. Cousins
Department of Physics, University of California, Los Angeles, California 90024-1547

(Received 1 June 1994; accepted 3 November 1994)

The price to pay is that you have to think of the charge of the electron
as a random variable. But that’s not the only price.
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Then ...

Why isn’t every physicist a Bayesian?

Robert D. Cousins
Department of Physics, University of California, Los Angeles, California 90024-1547

(Received 1 June 1994; accepted 3 November 1994)

The price to pay is that you have to think of the charge of the electron
as a random variable. But that’s not the only price.

“Frequentists use impeccable logic to deal with an issue of no interest
to anyone”
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Then ...

Why isn’t every physicist a Bayesian?

Robert D. Cousins
Department of Physics, University of California, Los Angeles, California 90024-1547

(Received 1 June 1994; accepted 3 November 1994)

The price to pay is that you have to think of the charge of the electron
as a random variable. But that’s not the only price.

“Frequentists use impeccable logic to deal with an issue of no interest
to anyone”

“Bayesians address the question everyone is interested in, by using
assumptions no-one believes”
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Discrete case: Poisson process with background

Observe n events, from unknown signal ; and background b = 3

e=(w+b) (4 + b)"

P(n|u) = Poiss(n|u+ b) = py

Confidence belt at 100 « % CL:
for each p find [Ny, no] such that P (n e [ny, o] | 1) = «

Central 90%: P(n < ny | ) = 0.05and P(n > no | ) = 0.05
Upper 90%: P(n < nqy | ) = 0.10

Let’s look at ny for the upper limit

n1—1

010=P(n<ny|p)= >
n=0

e~ (13 (1, + 3)"
n!
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Since ny is discrete, only have exact solutions for certain p.

0.10=P(n<ny|p)
n=1: 010=¢e (3 x 1 = no solution
n=2: 010=e "3 x [1 4 (u+3)] = 1= 0.88972
n=3: 010=e 3 x [1 4 (u+3)+ L(u+3)?] = p=232232
Exact coverage is not possible: either “overcover” or “undercover”.
Avoid undercoverage by replacing
P(ne[n,oc0)|p) =090 — P(ne[ny,o00)|p)>0.90

Thus the choice is

00 <;u<088972 = ny=1
088972 < ;1 <232232 = =2
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Minimum overcoverage 90% C.L. confidence belts for central
confidence intervals and upper limit, for unknown Poisson signal mean
and Poisson background b = 3.

15 15 —,
14 14 =
13 = 13
12 12 -
11 [ 11 s
=10 [ =10
§ 9 o § 9 o
s 8 ] s 8 ]
B 7 B 7
5 6 - B 5 6 B
(2] | ofo 75
4 4 -
3 s e 3
2 [t o 2 s
1 1
012345678 9101112131415 0T 2345678 9101112131415

Measured n Measured n
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With the choice P (n e [ny,no]|u) > «

the intervals overcover and are conservative.
This is unavoidable for discrete distributions, but NO good.
A 90% C.l.interval should fail 10% of the time.

If want intervals that cover more than 90%, don’t add conservatism,

but rather go to higher confidence levels.

50
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Flip-Flopping

Ideal Physicist Real Physicist

Choose Strategy Examine data
Examine data Choose Strategy

Quote result Quote Result

Example:

You have a background of 3.2

Observe 5 events? No discovery: Quote one-sided upper limit
Observe 25 events? Discovery: Quote two-sided confidende interval.
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An experiment designed to measure a positive quantity;

6 M T T T T T T T 6 TTTT[TTIT T [TT T T [ TTT T[T TTT[TTTT]

5 F a 5 F /:
af . af .
3 [ ] = [ ]
§3 | . RN .
= r ] = r ]
2 : 2 4
1h . 1E .
0 :III/IIII 111 1111 1111 IIII: 0 :I/IIII 1111 III/IIII IIII:
2 - 4 -2 -1 0 1 2 3 4
Measured Mean x Measured Mean x

Which one to use?



One may choose the following startegy:

If the result x is less than 3 o above zero, state an upper limit
If greater than 3 o, state a central confidence interval

If measured value is negative, be conservative and pretend measured
zero when calculating interval.
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One may choose the following startegy:

If the result x is less than 3 o above zero, state an upper limit

If greater than 3 o, state a central confidence interval

If measured value is negative, be conservative and pretend measured

zero when calculating interval.

6 T

N [T T T T T T T T T

N
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(o2}

(6]

IN

Mean u
w

N

=

N[TTTT[r T r[rrrr[rrrr[rrrr[rrrr

o

-
o
=
N
w
£

For 1 = 2.0, acceptance interval is x; = 2-1.28 and xo = 2+1.64,
P(x1 < x < xo|p=2.0)=85% < 90% = intervals undercover

They are not confidence intervals and certainly not “conservative” Cl.

54
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Problems:

@ If you use the data to decide which plot to use, the hybrid method
can undercover

@ Your Cl can be the empty set, or unreasonably “precise”.

@ “Worse” experiment with larger expected background can get
“better” ClI.

Let's discuss briefly this 3™ point.
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CASE I: Experiment expects no background, and observes no signal.
Frequentist 90% upper limit? Reject all values of u for which

P(0|n) = Poiss(0|u) =exp(—u) islessthan 10%

P(O | Mreject) < 010
exp (—fhreject) < 0.10

—Hreject < 1090.10 = —log 10
Hreject > 2.30

56

CASE II: Experiment expects mean background b, observes no signal.

P (0] 1) = Poiss (0| u + b) = exp [~ (i + b)

P (0| pireject) < 0.10

exp [—(fireject + b)] < 0.10
_(Mreject + b) < Iog 0.10
Hreject > 2.30 — b
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90% CL frequentist and Bayesian upper limits

for n = 0 observed events and background expectation b

b=0|b=1|b=2|b=3 | b=4
Standard Classical | 2.30 1.30 0.30 I} %}
Unified Classical | 2.44 1.61 1.26 1.08 1.01
Uniform Bayesian | 2.30 | 2.30 | 230 | 2.30 | 2.30

The same problem that in the gaussian case.

If the experiment measures n = 0 it yields an empty set.

Should the experiment report “No result at 90% CL™?

57
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The “unified” approach: Feldman-Cousins

Back to the confidence belt for a Poisson experiment with b = 3
Consider the horizontal acceptance interval at signal mean . = 0.5
The probability of obtaining n = 0 events is exp[—(0.5 + 3)] = 0.03
Pretty low. But,compared to what?

If we got n = 0, our best bet for 1 is fipest = 0

And for our best bet, the probability is P(O | pipest) = 0.05

Now, 0.03 is not much smaller than 0.05, so ¢ = 0 is not that bad.

Take the ratio 0.03/0.05=0.607 as figure of merit for . = 0 hypothesis.
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For each n let upes be that value of © which maximizes P(n| u)

within the physically allowed region (non-negative p).
Thus, ppess = max(0, n — b).

Choose what values of n to include in the confidence belt
following a merit ordering based on the ratio of likelihoods

Z(n|p)

R=———""
-’zﬂ(n ’ :ubest)

59
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Construction of confidence belt for signal mean p = 0.5
in the presence of known mean background b = 3.0.

n  P(n|p) pwest P(N| fiest) R rank U.L. central
0 0.030 0. 0.050 0.607 6

1 0.106 0. 0.149 0.708 5 V Vv
2 0.185 0. 0.224 0826 3 Vv Vv
3 0.216 0. 0.224 0963 2 V Vv
4 0.189 1. 0.195 0.966 1 V Vv
5 0.132 2. 0.175 0.753 4 V vV
6 0.077 3. 0.161 0.480 7 vV Vv
7 0.039 4. 0.149 0.259 v v
8 0.017 5. 0.140 0.121 V

9 0.007 6. 0.132 0.050 V

10 0.002 7. 0.125 0.018 V

11 0.001 8. 0.119 0.006 V
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This process is repeated for each i and yields

R &
|

el
N W

[y
[

=
o

Signal Mean

OFRP NWbMOU OO

012345678 9101112131415
Measured n

Because of the discreteness of n, the acceptance region
contains a summed probability greater than 90%.
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Comparison of standard and unified confidence belts

15 15 -
14 14
13 | 13 o
12 12 [
11 - 11
=10 [ =10 o]
§ 9 ) § 9 =
s 8 | s 8
S 6 — - 56 ] ]
D 5 ) o] o5
4 4 [ [
3 [ = 3 o
2 [t oo 2 ol
1 1 [
0012345678 09101112131415 001 234567809101112131415

Measured n Measured n
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FC: Gaussian case near physical boundary

For a particular x, uwey is the physically allowed value of . for which
P(x | 1) is maximum. This is pest = max(0, x)

[ 1/Ven, x>0
P(x | ptbest) = { eXp(—X2/2)/\/Z7 x < 0.

And the likelihood ratio R :

OP(x|p)  f exp(—(x—p)?/2), x>0
Alx) = P(xX] ftbest) { exp (xp — p?/2), x<O0.

For a given p, the acceptance interval [x1, xo] satisfies
X2
R(x) = R(xs) and / P(x| 1) dx = a
X1

Here the coverage is exactly 90% by construction.
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Comparison of standard and unified confidence belts

l{)_llll TTT T[T T T T TT T T [ TT T T]TTTT

0

L1y
1

2

Measured Mean x

Mean n
N w B (63 o
II\)_IY L UL LLLEL UL L

=

o

0

2

Measured Mean x
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FC does not solve the problem of shrinking CI for increasing
background

90% CL frequentist and Bayesian upper limits

for n = 0 observed events and background expectation b

b=0|b=1|b=2|b=3 | b=4
Standard Classical | 2.30 1.30 0.30 I} I}
Unified Classical | 2.44 1.61 1.26 1.08 1.01
Uniform Bayesian | 2.30 | 2.30 | 2.30 | 2.30 | 2.30

FC advocate to inform also the sensitivity of the experiment:

the average upper limit one would get from an ensemble of

experiments with your expected background and no true signal.

65
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Preliminary result from CDF on the top quark charge

f+ is fraction of pairs with top charge assigned to +2/3 via a jet charge
algorithm using the charge of the tracks associated to the jet weighted
by their momentum projection on the jet axis.

The measured value 0.87 yields a lower bound 0.6 @68% CL

Notice that a measurement above 1.2 would give extremely narrow
confidence intervals.

CDF Run Il preliminary L=1.5 [N

f+ Generated

68.28% C.L.

Most Likely
Value

1 12 14 16 18 2
f+ Measured
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Feldman and Cousins Summary

@ Avoids forbidden regions and empty results in a Frequentist way
@ Solves flip-flopping, it “unifies” central and upper limit belts
Makes us more honest (a bit)

Can lead to 2-tailed limits where you dont want claim discovery
Not easy to calculate and extend to systematic errors
Unphysically small CI still present

Shrinking CI for increasing background

Upper limits may tighten when including systematic errors
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An example

~ 4
2 F 1F
T o5t
2;7 0 05 1 15 2 25R
, 1 CDF Il \_R=1.12"%%
Ratio of top quark = 0z~
i : 0.5 R
branching fractions s ]
ad
0.8
- B(t — Wb)
- B(t — Wq) 0.6 B 95%C.L.
[ 90% C.L.
[168% C.L.

with q= b, S, d. 0455 1 15
R

R > O 61 at 95(%) CL FIG. 2: The upper plot shows the likelihood as a function

of R (inset) and its negative logarithm. The intersections of
the horizontal line In(L) = —0.5 with the likelihood define
the statistical 1o errors on R. The lower plot shows 95%
(outer), 90% (central), and 68% (inner) CL bands for Rirue
as a function of R. Our measurement of R = 1.12 (vertical
line) implies R > 0.61 at the 95% CL (horizontal line).
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ayes’ theorem

Conditional probability: given two events X and Y

P(XNnY
P(X|Y)= —(':(X) )
Example, rolling dice:

P(n<3 n neven) 1/6 1

P(n < 3|neven) = P(neven) T 3/6 3

Consider the sample space divided in exclusive events Y;:
YinY,=o,i#j and Y P(Y)=1
i

For any event X, Bayes theorem states:

P(X| Yx) P(Yk)

PN = =Xy PeY)




Example: Particles entering a threshold Cerenkov can be e, 7 or K,
P(e) =1% P(m) = 70% P(K) = 29%
The probabilities that the detector fires (efficiencies) are
P(C|e) =99% P(C|7)=2% P(C|K)=1%
If a particle fired the detector, what'’s the probability that it's an e?

P(C|e)P(e)
(Cle)P(e) + P(C|r)P(r) + P(C|K)P(K)

P(e|C) =5

B 0.99 x 0.01
~ 0,99 x 0.01 + 0.02x0.70 + 0.01 x 0.29

= 37%

Notice that is is a rather selective detector,

yet 63% of signals will be background (= and K).
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@ To invert probabilities, P(A| B) — P(B| A), need P(B)
P(C|e) — P(e|C), need P(e)

e P(A|B) # P(B|A)

P(Cle) # P(e|C)

Or, with a real life example:

A = female or male P(pregnant | female) ~ 0.5%
B = pregnant or non-pregnant  P(female | pregnant) >> 1%

7l
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Bayes’ Theorem: Continuous version

Instead of discrete probabilities P(Y), we have density functions f(y)

Conditional probability:

P(XNY) continuous f(x|y) = f(x,y)

PIXIV) = =55 s e

Bayes Theorem:

P(X|Yx) P(Yx)  Continuous (y|x) = fix1y)f(y)
2 P(X|Y)P(Yi)  case Jf(x1y)f(y)dy

P(Yi| X) =
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Example: The 200 GeV CERN muon beam had an approximately
gaussian energy distribution with 1, = 200 GeV and o, = 5 GeV.

f(Ey) = \/%Ub exp [_;(Ebg—bﬂb)z}

The EMC spectrometer measured the energy of each incoming muon
with a gaussian uncertainty of 0.5% (op = 1 GeV),

(Em —2 Eb)z}

F(Em| Ep) = \/127 exp {—

Question: For a given event the measured energy was E,; = 208 GeV.
What can we say of the true energy E, affer the measurement?

f(Em | Ep) f(Eb)
J f(Em| Eb) f(Ep) dEp

F(Ep|Em) =

Answer: f(Ep| Em) ~ N(207.5,0.9).

73
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Bayesian use of Bayes’ Theorem

Parameter p of an f(x | ) is regarded as a random variable itself.
Apply Bayes: ot x) = f(x | ) F()

SO ) £() dpe
to calculate how our knowledge of i improves after measuring x

f(y0) —Measurement ¢, | x)

f(1): “degree of belief” on the physical magnitud before experiment
Write it 7(u), and call it prior, to emphasize this interpretation

f(u| x): posterior, describes knowledge after the experiment is done
Sometimes written as p(u) to emphasize interpretation

_ fx ) w(p)
J x| ) m(p) dpe

p(1) = (] X) o 1(x | ) () = 2 (x| 1) (1)

74
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Choice of prior

Informative (subjective):

Previous measurement is u = a+ b: take w(p) ~ N(u, b)

Uninformative (objective):

7(p) = const

However there is arbitrariness in how ignorance is parametrized
Should we choose () flat in y, in 1/p, or in p2?
Use decay constant A or the 7 = 1/A?

Use m, or m?, the actual observable?

Statisticians investigate theoretically motivated uninformative priors
(e.g., scale independence in Poisson if choose 1/u)
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The preferred choice in HEP is 7(x) = const

f(plx) oc Z(x | p) (1)

The posterior becomes the likelihood, suitable normalized.
Z(x|u) is promoted to a probability density on x and on .
Note:

@ how the symmetric notation .Z(x | u) < £ (| X) comes handy,

@ the parallelism with conditional probability
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What'’s the attitude of physicists?

Physicists want the data to “speak for themselves”,
and choosing one’s favorite prior is not precisely in this direction.

But even in frequentist procedures there is arbitrariness.
What estimator to choose? How to construct your confidence belt?
There are different frequentist results for the same data...

A growing attitude towards Bayesian approaches is:
Why not?, if one can show that it provides adequate coverage...

This is the “pragmatic” approach. After all, Bayesian methods:
1. easily account for boundaries: set (1) = 0 for 1 unphysical
2. are handy for treating uncertainty in nuisance parameters.
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Poisson upper limit

We observe n events from a Poisson distribution with ;x = se + b

Z(n|s) = e =tD)(se + b)"/nl

The posterior results  p(s|e, b,n) = /:/’ e *5(es+ b)"x(s)

With normalization N = / e *%(es+ b)"x(s) ds

0
Note that for n = 0, the posterior becomes independent of ¢ and b,
and for uniform prior (o« = 1) it is simply the exponential.

For uniform prior, e = 1 and b = 0, Bayesian upper limits are
identical to those obtained with Neyman’s frequentist construction.
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For Confidence Intervals there is the usual freedom to decide how to
divide your (1 — «)% probability between the lower and upper tails
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Binomial confidence interval

Estimate efficiency e = n/N, from N trials and n successes

_ Binom(n|e,N) n(e)
PElmN) = T giomnle, N) x(e) de

For uniform prior 7(¢) = 1 the integral in the denominator is

! N! n (4 N—nd
/0 N € (—e T de= g

yielding the posterior

p(e|n,N) = (N+1)Binom(n|e, N)
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The posterior distribution for N =10, and n=0,1,2

12 r T T T
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10k 4
8l\ ]
e -
o)
a 4 4
2 _
0 . .
0 0.2 0.4 0.6 0.8 1
efficiency ¢

Eu
Obtain the Cl [z, 2] at 100 @ % CL via / f(e|n,N) de = a

€d
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Other methods

Bayesians or frequentists claim some self-consistent justification for
their approach, Other methods are more ad hoc. Hence, they do not
usually achieve either coverage or Bayesian credibility.

The two method most used are those implemented by MIGRAD/HESSE
and by MINOS in the MINUIT package.

It is interesting to see how the statistics requirements of the HEP
community evolved since the early 90s, as ahown in this excerpt from
the MINUIT writeup:

MINOS is designed to calculate the correct errors in
all cases, especially when there are non-linearities
as described above...
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Log-likelihood intervals

Have n data points x; with p.d.f. f(x; | ;) depending on k parameters 6.

The ML estimators satisfy .2 (0; | X;) = % max-

The ratio of likelihoods is a random variable

)\(9]) = (Ajlxl)

2(0;] xi)

The distribution of —21n A (¢) tends asymptotically to x%
—2InX\(0) = @?

QZ

2

In.Z(0) = In.2(0) — with Q% ~ x2
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Any departure of ¢; from HA,- causes Q? to increase from 0.

We can calculate this probability
a
P(0 < nga):/ (u) du = a
0

Then, the a% CL interval is the region in € space that satisfies

a

InZ(0) > In Lmax — >

For one parameter the limits of the interval [6,, 84] are the solution of
a a .,
InZ(0) =1InLmax — > where x;du=a«a
0

a=1,4,9 for a=68.27,95.45,99.73, thatis 10, 20, 30 errors
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FIG. 2: The upper plot shows the likelihood as a function
of R (inset) and its negative logarithm. The intersections of
the horizontal line In(L) = —0.5 with the likelihood define
the statistical 1o errors on R. The lower plot shows 95%
(outer), 90% (central), and 68% (inner) CL bands for Rirue
as a function of R. Our measurement of R = 1.12 (vertical
line) implies R > 0.61 at the 95% CL (horizontal line).
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One equation, two interpretations:

1q and py, known, but random

Frequentist ,
w1 unknown but fixed

1q and p, known, and fixed

Bayesian
w unknown and random
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