LBNE

Sam Zeller

Fermilab

June 17, 2011

with help from:

M. Bass, M. Bishai,

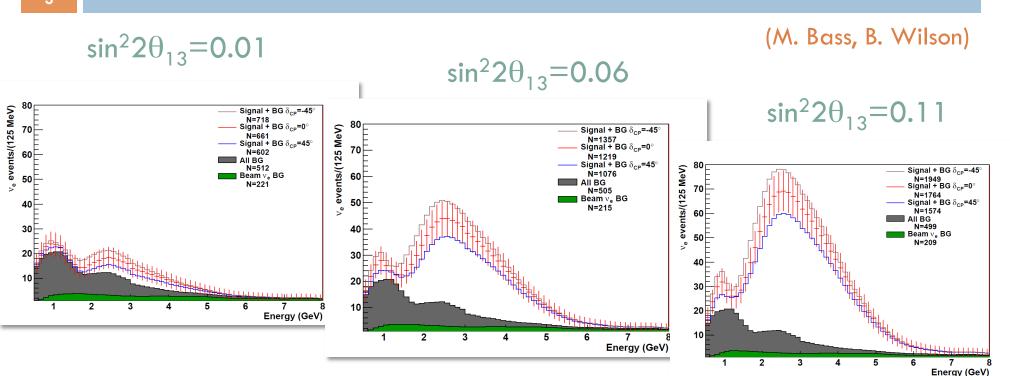
M. Diwan, J. Kopp, J. Strait,

L. Whitehead, B. Wilson

• what would a larger value of $\sin^2 2\theta_{13}$ mean for LBNE?

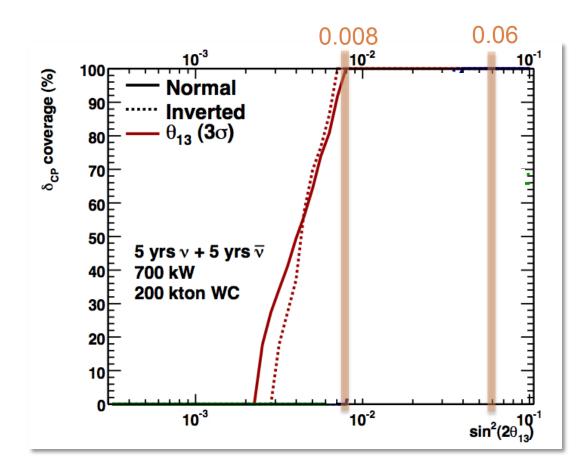
LBNE

 all slides and information shown use standard assumptions for LBNE* (unless otherwise stated)


- 200 kton WC detector (34 kton LAr detector is roughly equivalent)
- 1300 km baseline
- 700 kW on-axis broad band beam -> resolve parameter degeneracies (simultaneous θ_{13} , MH, \mathcal{L} P)
- 5+5 years $v + \overline{v}$ running
- 5% background uncertainties
- 3σ sensitivity projections
- GLoBES
- * these results are subject to change and and do not necessarily reflect the official position of the LBNE collaboration

Larger θ_{13} Means Larger Signals

3

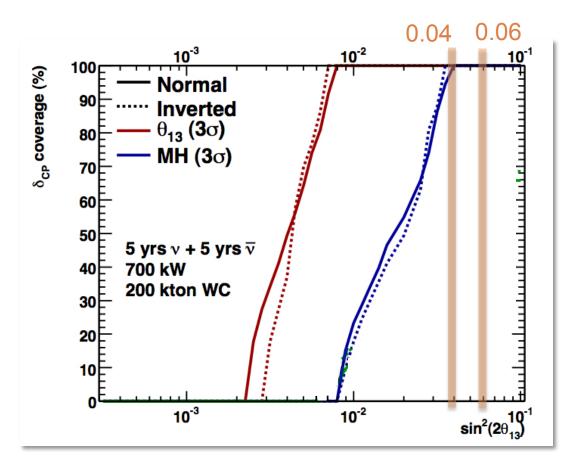

$\nu_{\rm e}$ signal events for 200 kton WC, 5 yrs ν , 700 kW, 1300km, NH, δ =0 (expect smaller rates for IH, smaller rates also for anti- ν running)

149 714 1,265

(almost x10 increase in # signal events in going from $\sin^2 2\theta_{13} = 0.01$ to 0.1)

恭

Non-Zero θ_{13}


• ability to determine whether or not $\sin^2 2\theta_{13} \neq 0$ obviously improves with increasing θ_{13}

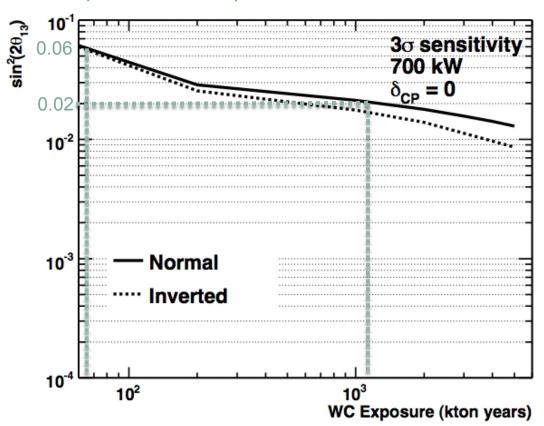
(LBNE can determine if θ_{13} is non-zero at 3σ for both mass hierarchies and 100% of δ_{CP} values if $\sin^2 2\theta_{13} \gtrsim 0.008$)

• but of course this is not the main goal of LBNE ...

华

Mass Hierarchy

- LBNE's ability to resolve the mass hierarchy also improves with increasing θ_{13}
- if $\sin^2 2\theta_{13} \gtrsim 0.04$, LBNE can resolve MH at 3σ for 100% of δ_{CP} values


(and at 5σ if $\sin^2 2\theta_{13} \gtrsim 0.06$)

• will provide definitive measurement of mass hierarchy; important for $\angle P$

‡

Mass Hierarchy

(note: kink at ~200 kt-yrs is a sampling artifact)

• in terms of time ...

a larger $\sin^2 2\theta_{13}$ will allow a more rapid determination of the mass ordering

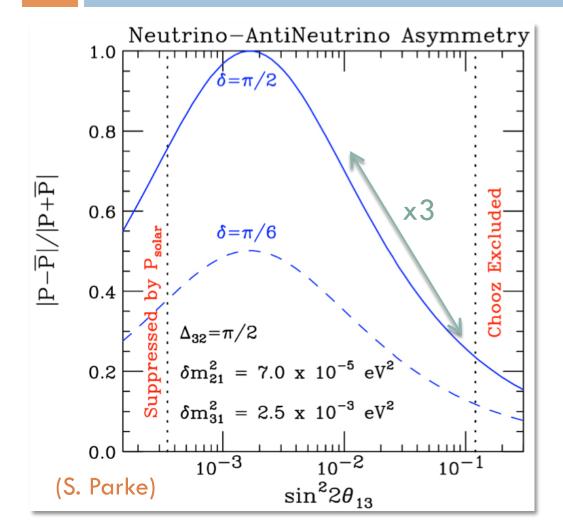
• LBNE can resolve MH at 3σ in ~ 4 months of running if $\sin^2 2\theta_{13} = 0.06$ (200 kton WC, 700 kW, $\delta_{\text{CP}} = 0$, NH)

compared to \sim 6 years if $\sin^2 2\theta_{13}$ is 0.02

卆

CP Violation

- main goal of LBNE is to unambiguously measure CP violation
- the θ_{13} and MH measurements will benefit significantly from a larger $\sin^2 2\theta_{13}$, but the measurement of \mathcal{L}^p and δ_{CP} is largely unaffected by the value of $\sin^2 2\theta_{13}$


• to first order, this is due to two competing effects...

size of event sample

华

v/\overline{v} Asymmetry in Vacuum

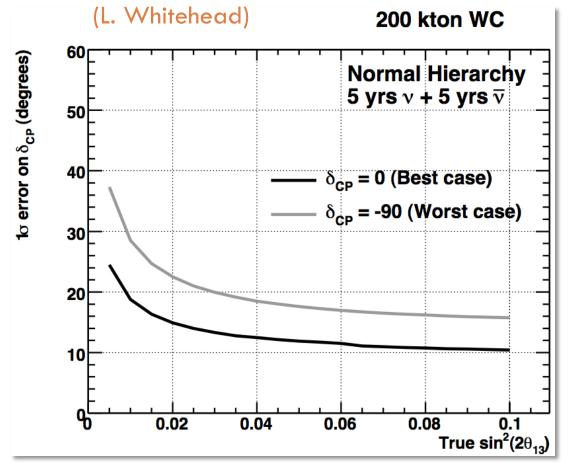
(ignoring matter effects & backgrounds for now)

the asymmetry

$$\frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}$$

is proportional to $\sim 1/\sin\theta_{13}$

• the asymmetry gets smaller as θ_{13} increases

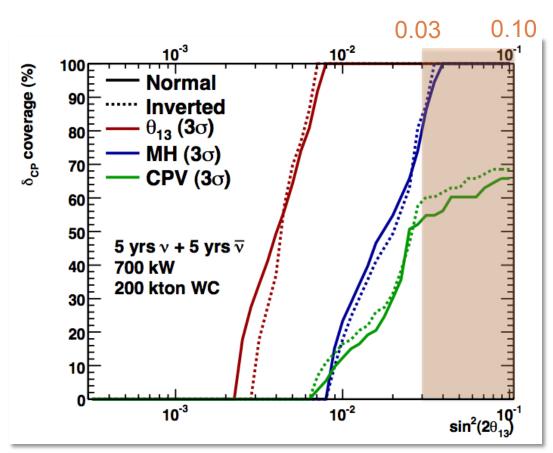

~75% for
$$\sin^2 2\theta_{13} = 0.01$$
 $\delta_{CP} = \pi/2$

factor ~3 reduction in CP asymmetry (independent of baseline)

• signal rate increases w/θ_{13} factor ~10 increase from 0.01 to 0.1 so x3 improvement in stat sig of signal

华

Measurement of CP Phase


(calculation includes backgrounds, background uncertainties, and matter effects)

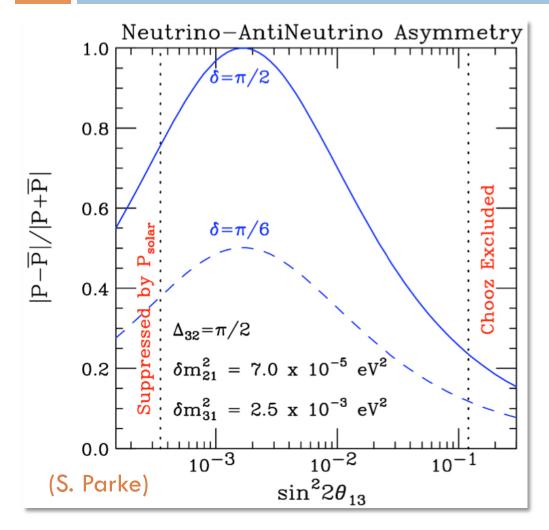
- as a result, the error on the CP asymmetry and thus how well can measure δ_{CP} is essentially independent of the value of θ_{13}
- can provide an excellent measurement of δ_{CP} over a very broad range of θ_{13}

(10-20° for $\sin^2 2\theta_{13}$ ~0.03-0.10; gets a little worse for smaller θ_{13})

CP Violation

- LBNE's sensitivity to \cancel{CP} is also largely independent of θ_{13} for $\sin^2 2\theta_{13} \sim 0.03$ -0.10
- can measure \not ZP at 3σ for 50-70% of δ_{CP} values (NH, IH) over a broad range of θ_{13}

(green curve shows range of values over which CP violation can be established at 3σ)


Conclusions

- ullet a positive indication of eta_{13} makes LBNE scientifically very important
- for larger values of $\sin^2 2\theta_{13}$:
 - LBNE can determine the mass hierarchy much more quickly
 - ability to measure CP violation and CP phase is largely unaffected by the value of $\sin^2 2\theta_{13}$ (true for $\sin^2 2\theta_{13} > 0.03$)
- to perform a definitive measurement of CP violation, one must maintain a large exposure (detector mass, beam delivery) no matter what the value of θ_{13} ... this is what ultimately drives the scale of the experiment
 - additional effects (matter effects, backgrounds, and uncertainties)
 only increase the need for more statistics

Also ...

- also important to note that if θ_{13} is large, the asymmetry you're trying to measure is small, so:
- need to know underlying v/\overline{v} flux & σ more precisely
- bkg content &uncertainties start to become more important