

Higgs Boson status and prospects at LHC

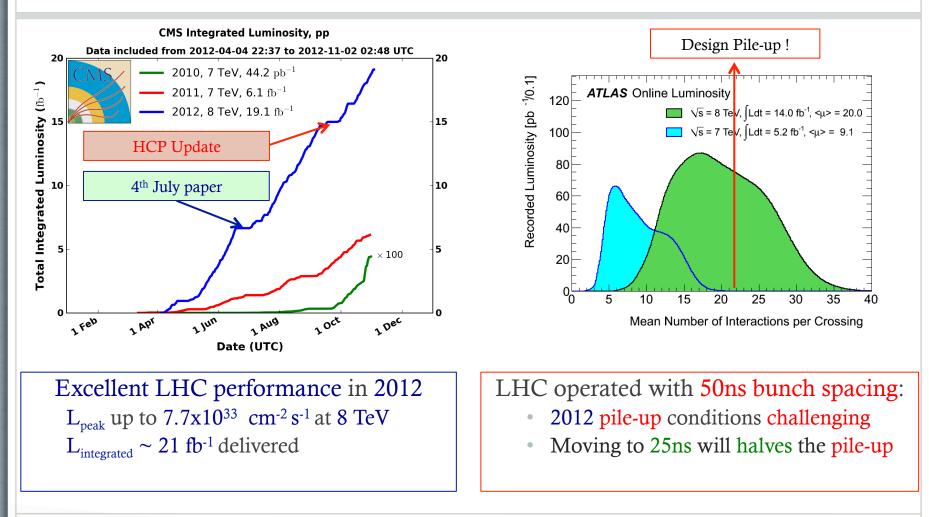
November 14 2012

Higgs Factory WS- Fermilab

Fabio Cerutti – LBNL On behalf of CMS and ATLAS collaborations

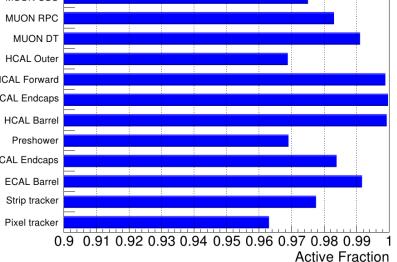
7. Cerutti - Higgs Factory

Outline



- SM Higgs results at LHC:
 - Detectors and Accelerator status
 - Higgs properties: including some <u>new HCP results</u>
 - Mass, Spin/CP and Couplings
- Prospects for High Luminosity-LHC (High Energy)
 - Couplings (Mass and Spin/CP in backup)
- Conclusions

Detectors and LHC operation



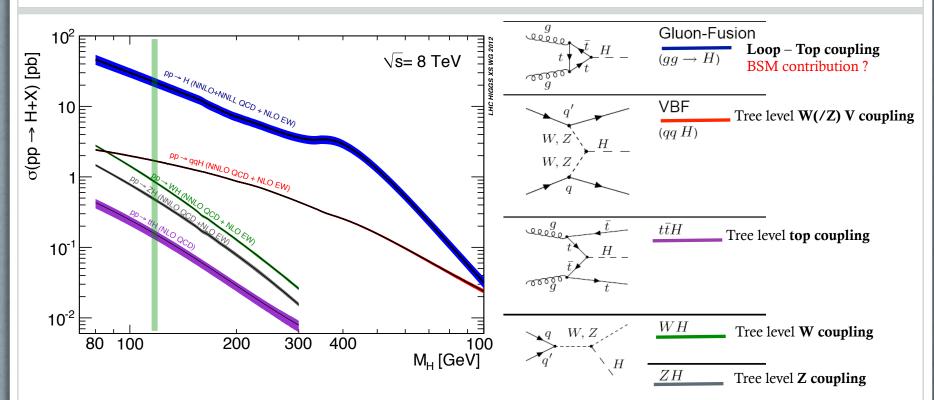
Detectors and LHC operation

ATLAS - 2012

Subdetector	Number of Channels	Approximate Operational Fraction	F	omorreinnary
Pixels	80 M	95.0%	MUON CSC	
SCT Silicon Strips	6.3 M	99.3%	MUON CSC MUON RPC MUON MUON D	
TRT Transition Radiation Tracker	350 k	97.5%		T
LAr EM Calorimeter	170 k	99.9%	HCAL Oute	r
Tile calorimeter	9800	98.3%	HCAL Forwar	d
Hadronic endcap LAr calorimeter	5600	99.6%	HCAL Endcap	s
Forward LAr calorimeter	3500	99.8%	HCAL Barre	
LVL1 Calo trigger	7160	100%	Preshowe	r 📃
LVL1 Muon RPC trigger	370 k	100%	ECAL Endcap	s
LVL1 Muon TGC trigger	320 k	100%	ECAL Barre	
MDT Muon Drift Tubes	350 k	99.7%	Strip tracke	er 📃
CSC Cathode Strip Chambers	31 k	96.0%	Pixel tracke	r en se
RPC Barrel Muon Chambers	370 k	97.1%		0.9 0.91 0.92 0.93
TGC Endcap Muon Chambers	320 k	98.2%		

CMS Preliminary - June 2012

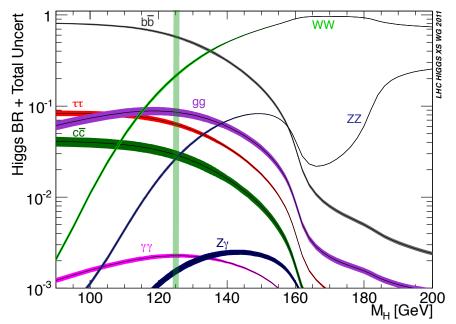
- ATLAS and CMS in very good shape: Fraction of Active Channels >96%
- <u>90% of delivered luminosity used in physics analysis</u>



SM Higgs Boson Production and Decay at LHC

- Main production mode: ggH
- Access to top (direct and Loop), W and Z couplings via production cross section

Higgs boson production at LHC


8 TeV

M _H (125 GeV)	σ(fb)	δ(th) _{TOT}	δ(th) _{QCD-Scale}	$\delta(th)_{PDF+\alpha s}$	δσ/δM(.5GeV)
ggH	19.5 x 10 ³	15%	8%	7%	0.8%
VBF	1.58 x 10 ³	3%	0.2%	3%	0.4%
WH	697	4%	0.5%	4%	1.3%
ZH	394	5%	1.5%	4%	1.3%
ttH	130	14%	7%	8%	1.9%

- Cross-sections are LARGE: LHC is the first Higgs Factory
- Theory systematics more relevant for ggH and ttH Mass dependency very weak

Higgs boson decay at LHC

- Experimentally accessible:
 - bb, ττ, WW, ZZ, γγ, Zγ, μμ
- $\Gamma_{\rm H} \sim 4 \text{MeV NO direct measure at LHC}$

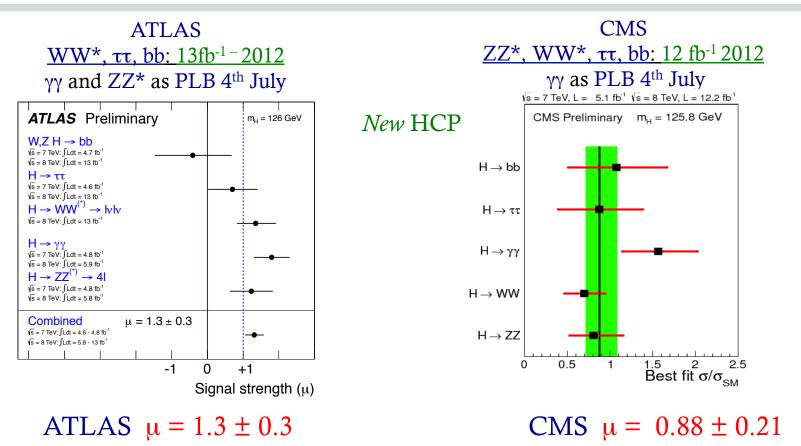
$M_{\rm H}$ =125 GeV						
Process	Branching ratio	Uncer	tainty			
$\textbf{H} \rightarrow \textbf{b}\textbf{b}$	5.77 x 10-1	+3.2%	-3.3%			
$H \rightarrow \tau \tau$	6.32 x 10-2	+5.7%	-5.7%			
$H \rightarrow \mu \mu$	2.20 x 10-4	+6.0%	-5.9%			
H ightarrow cc	2.91 x 10-2	+12.2%	-12.2%			
$H \rightarrow gg$	8.57 x 10-2	+10.2%	-10.0%			
$H \rightarrow \gamma \gamma$	2.28 x 10-3	+5.0%	-4.9%			
$H \rightarrow Z\gamma$	1.54 x 10-3	+9.0%	-8.8%			
$H \rightarrow WW$	2.15 x 10-1	+4.3%	-4.2%			
$H \rightarrow ZZ$	2.64 x 10-2	+4.3%	-4.2%			
Г _Н [GeV]	4.07 x 10-3	+4.0%	-3.9%			

Mass dependency:

- $\delta BR(bb)/0.5 \text{ GeV} \rightarrow 1\%$
- $\delta BR(WW)/0.5 \text{ GeV} \rightarrow 4\%$
- $\delta BR(ZZ)/0.5 \text{ GeV} \rightarrow 4\%$

SM Higgs Boson CMS and ATLAS results

9



Discovered Higgs-like Boson: Clear mass peak in $\gamma\gamma$ and $ZZ^* \rightarrow 4\ell$

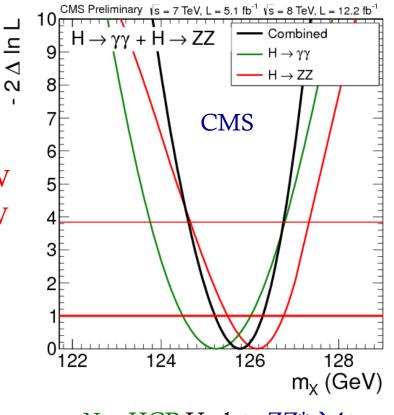
Is this the SM one ? From searches to measurements

10

Signal strength $\mu = \sigma BR / \sigma BR_{SM}$ *new* HCP results

<u>Agreement</u> with SM prediction (and CMS/ATLAS) Precision already ~20%

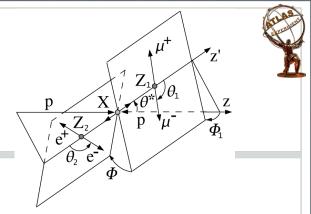
Mass Measurement

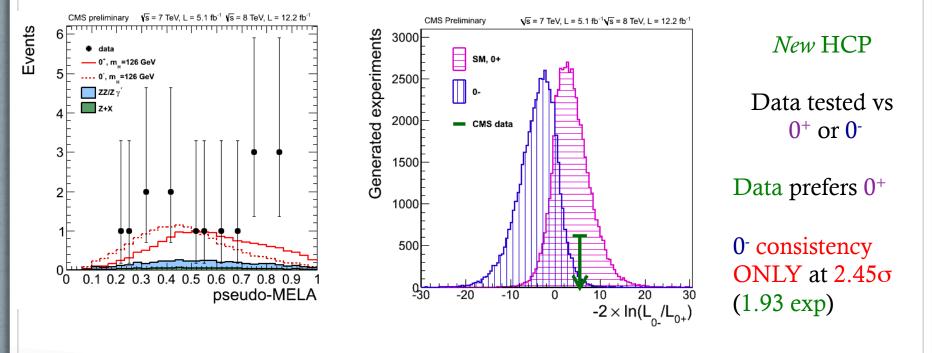

Only missing SM parameter

- From γγ and ZZ*(4l) mass spectrum
 - ATLAS: $M_{H} = 126.0 \pm 0.4_{stat} \pm 0.4_{sys}$ GeV
 - CMS: $M_{\rm H} = 125.8 \pm 0.4_{\rm stat} \pm 0.4_{\rm sys}$ GeV

Error on the average (*guess the value*) will be ...:

~ 0.4 GeV (3 per mill)


- Impact of mass error on LHC yields
 - less than 4% (WW/ZZ most sensitive)


New HCP Update $ZZ^* \rightarrow 4\ell$

Spin/CP

- ZZ* sensitive to Spin and CP properties
 - ZZ* complete set of kinematic variables (8)
 - Combined in a ME-based discriminant: pseudo-MELA

The Couplings fit

• Basic ingredient <u>Yields per category/channel (e.g., VBF 2J tag of H $\rightarrow \gamma\gamma$)</u>

Production modes: gg, VBF, W/ZH, ttH + Final states: γγ, WW, ZZ, bb, ττ, Zγ, μμ

- Follow prescription form LHC-XS working group assuming:
 - Only one resonance + Narrow Width Approx. + SM Lagrangian tensor structure (also implies CP=0⁺)
- Observed yields parameterized SM prediction x coupling scaling factors κ^2
 - SM equivalent to all $\kappa = 1$
- This simplified approach is sufficient for Today's available statistics

$$\sigma \times BR(ii \to H \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$
$$(\sigma \cdot BR)(gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \cdot \frac{\kappa_{g}^{2} \cdot \kappa}{\kappa_{H}^{2}}$$

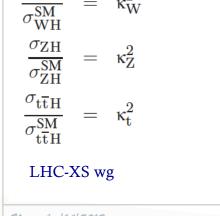
The Couplings fit

- Loop contributions can:
 - Expressed as a function of SM couplings •
 - Treated as free parameter (assume possible • **BSM** contributions)

(3)

(4)

(5)


(6)

(7)

 $\kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H})$

 $\kappa^2_{\rm VBF}(\kappa_{
m W},\kappa_{
m Z},m_{
m H})$

- Total width $\Gamma_{\rm H}$ two kind of assumptions •
 - Only SM particles contribute to $\Gamma_{\rm H}(\Gamma_{\rm i})$
 - Measure ratio of couplings

 κ_W^2

Production modes

=

_

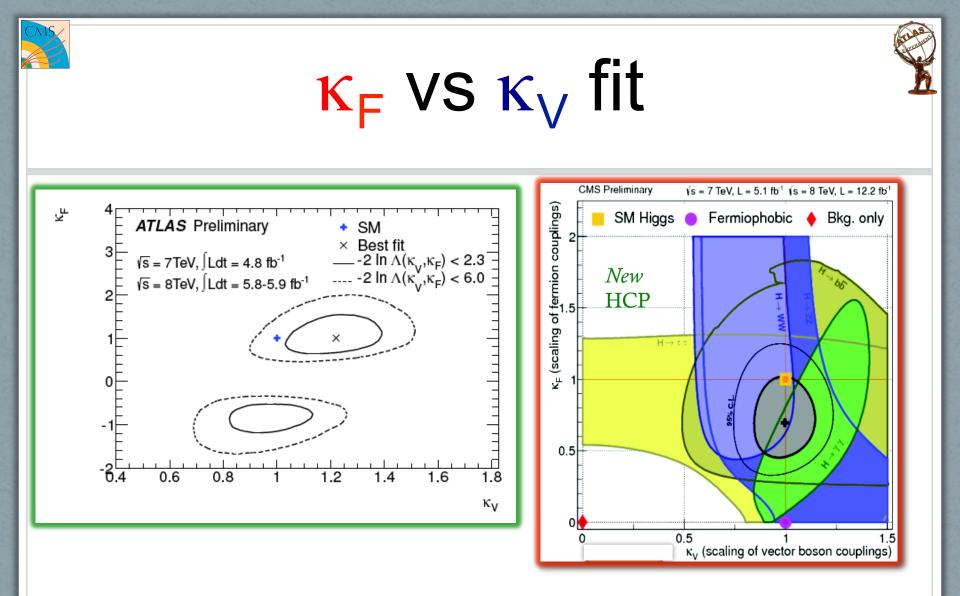
 $\sigma_{\rm ggH}$

 $\sigma^{\rm SM}$ ′ggH $\sigma_{\rm VBF}$

 $\overline{\sigma_{\mathrm{VBF}}^{\mathrm{SM}}}$ $\sigma_{\rm WH}$

Detectable decay modes

$$\begin{split} \frac{\Gamma_{WW}^{(*)}}{\Gamma_{WW}^{(*)}} &= \kappa_{W}^{2} \\ \frac{\Gamma_{ZZ}^{(*)}}{\Gamma_{ZZ}^{(*)}} &= \kappa_{Z}^{2} \\ \frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{SM}} &= \kappa_{b}^{2} \\ \frac{\Gamma_{\tau^{-}\tau^{+}}}{\Gamma_{b\overline{b}}^{SM}} &= \kappa_{t}^{2} \\ \frac{\Gamma_{\tau^{-}\tau^{+}}}{\Gamma_{\tau^{-}\tau^{+}}^{SM}} &= \kappa_{\tau}^{2} \\ \frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} &= \left\{ \begin{array}{c} \kappa_{\gamma}^{2}(\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa_{\gamma}^{2} \end{array} \right. \end{split}$$

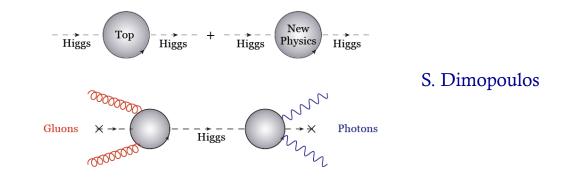

7. Cerutti - Higgs Factory

$\kappa_F VS \kappa_V$ fit

Couplings to Fermion and Vector boson sectors: $\kappa_{\rm F}$ vs $\kappa_{\rm V}$

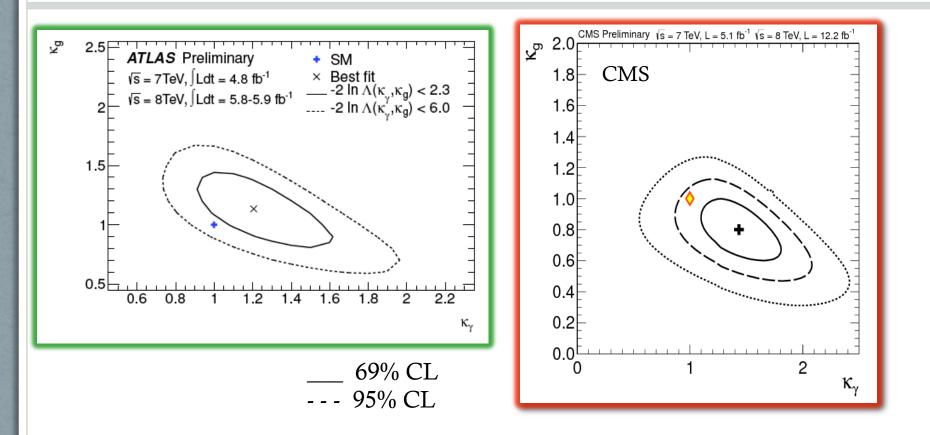
- All Fermion couplings scale with the same factor $\kappa_F (=\kappa_t = \kappa_b = \kappa_\tau = ...)$
- All Boson couplings scale with the same factor $\kappa_V (=\kappa_W = \kappa_Z)$
- Assumption only SM particles in $\Gamma_{\rm H} \rightarrow \kappa^2_{\rm H} (\kappa_{\rm F} \kappa_{\rm V}) \sim 0.7 \kappa^2_{\rm F} + 0.3 \kappa^2_{\rm V}$

Boson	Boson and fermion scaling assuming no invisible or undetectable widths						
Free par	Free parameters: $\kappa_{\rm V} (= \kappa_{\rm W} = \kappa_{\rm Z})$, $\kappa_{\rm f} (= \kappa_{\rm t} = \kappa_{\rm b} = \kappa_{\rm t})$.						
	$\mathrm{H}\to\gamma\gamma$	$H \to ZZ^{(*)}$	$\mathrm{H} \to \mathrm{WW}^{(*)}$	$\mathrm{H} \to \mathrm{b} \overline{\mathrm{b}}$	$\mathrm{H} \to \tau^- \tau^+$		
ggH ttH	$\frac{\kappa_{\rm f}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm f}^2 \cdot \kappa_{\rm V}^2}{\kappa_{\rm H}^2 \left(\kappa_i\right)}$		$rac{\kappa_{ m f}^2\cdot\kappa_{ m f}^2}{\kappa_{ m H}^2(\kappa_i)}$			
VBF WH ZH	$\frac{\kappa_{\rm V}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$rac{\kappa_{ m V}^2}{\kappa_{ m H}^2}$	•		$\frac{2}{V} \cdot \kappa_{\rm f}^2}{k_{\rm I}(\kappa_i)}$		



- Agreement with SM tested at 20-30%
- $\kappa_F = 0$ (Fermiophobic Higgs) <u>Excluded</u> at (much) more than 2σ

November | 14 | 2012



- Hierarchy problem related to top loop same that contributes to gg coupling
- Assumptions in κ_g vs κ_γ fit:
 - Direct Coupling to known SM particles assumed to be as in SM:
 - $\kappa_b = \kappa_W = \kappa_Z = \kappa_\tau = \dots = 1$
 - $\kappa_{\rm H} \sim 0.9 + 0.1 \kappa_{\rm g}$
 - No extra contributions to $\Gamma_{\rm H}$ (only known SM and gg)

Agreement with SM prediction at better than 2σ

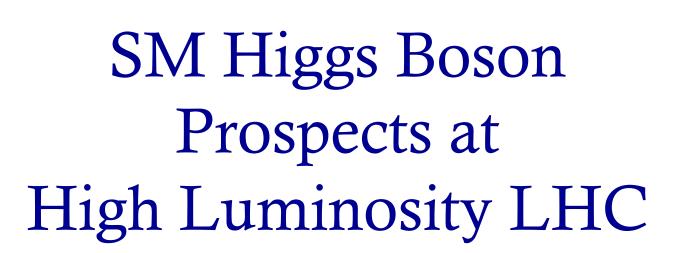
November | 14 | 2012

F. Cerutti - Higgs Factory

The Couplings roadmap

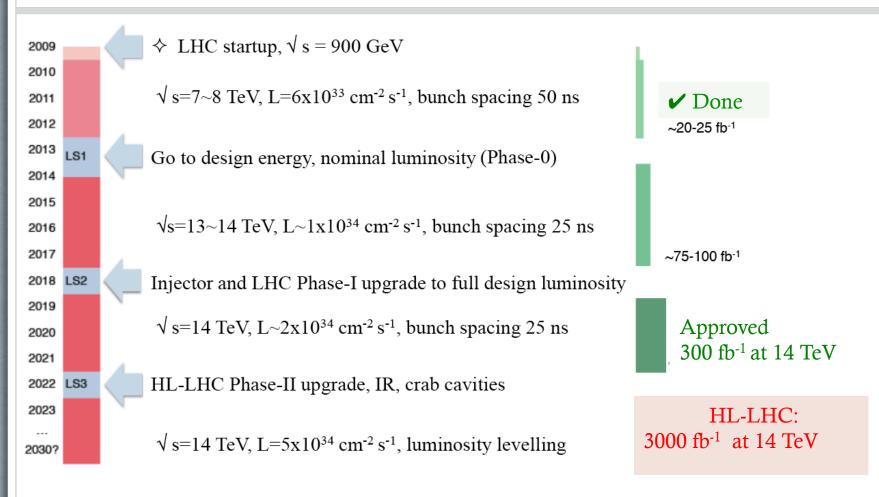
Test Higgs boson couplings depending on available L:

- Total signal yield μ: tested at 20% (κ tested at 10%)
- Couplings to Fermions and Vector Bosons 20-30%
- Loop couplings tested at 40%
- *Custodial symmetry W/Z Couplings tested at 30%
- Test Down vs Up fermion couplings
- Test Lepton vs Quark fermion couplings
- Top Yukawa direct measurement ttH: κ_t
- Test second generation fermion couplings: κ_{μ}
- Higgs self-couplings couplings HHH: $\kappa_{\rm H}$


*results in backup slides

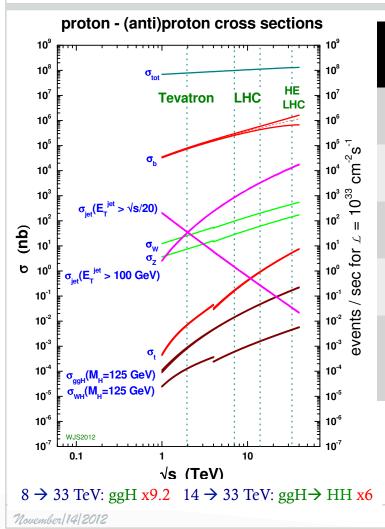
November|14|2012

Today 7/8 TeV ~ 10-15 fb⁻¹


LHC Upgrade 14/33 TeV ~ 3000 fb⁻¹

High Luminosity LHC: The timeline

High Luminosity LHC: the detector upgrades


- Both detectors are planning **important upgrades** to stand the harsher running conditions at HL-LHC: pile-up, rates, radiation damage
 - Pile-up ~ 4-5 times more pile-up then today
- Plan: keep detector performance for main physics objects at the same level as we have today
 - Improved trigger system
 - New tracking systems
 - Improved forward detectors
- Not discussed in this talk but **CRUCIAL** to profit of L increase

. . . .

Signal σ and Yields: HL/HE

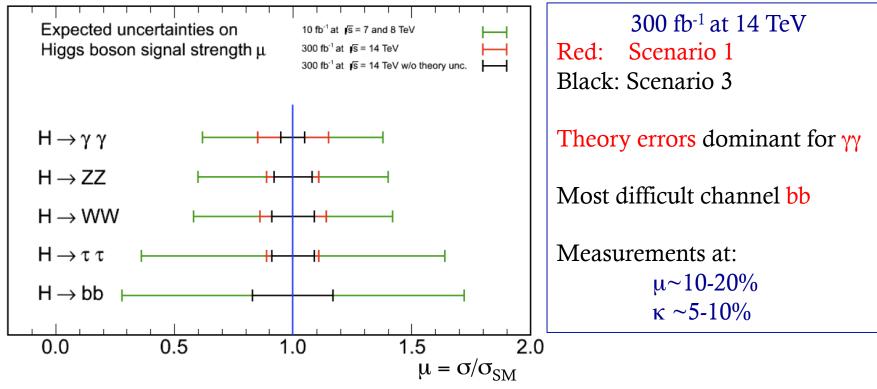
24

Process	3000 fb ⁻¹ 14 TeV	300 fb ⁻¹ 33 TeV
ggH→γγ	350k	123k
ggH→4ℓ	19k	6.7k
ttH→γγ	42k	30k
ttH→4ℓ/μμ	0.2k/0.4k	0.16k/0.3k
ggH→HH→bbγγ	270	160

LHC upgrades give access to <u>rare decays</u> Better signal Yields at HL-LHC BUT Pile-up and S/B better at HE-LHC

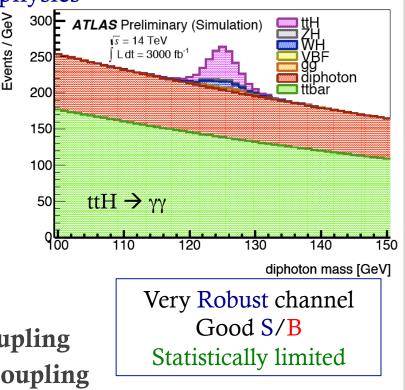
7. Cerutti - Higgs Factory

Couplings at HL-LHC: CMS


- Analyses included in CMS projection:
 - $H \rightarrow \gamma \gamma$ inclusive and VBF
 - $H \rightarrow \tau \tau$ all final state, Inclusive, Boosted, VBF,...
 - $H \rightarrow ZZ \rightarrow 4\ell$ Inclusive
 - $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ 0-jet, 1-jet, WH and VBF
 - VH→bb
 - $ttH \rightarrow bb$ Direct top Y coupling
 - H→ µµ
- **Projection** assumptions:
 - Scenario 1: all systematic + theory uncertainty kept unchanged
 - Scenario 2: exp. systematics scaled 1/sqrt(L) and theory by 1/2 (see backup slides ...)
 - Scenario 3: as 2 but theory uncertainties=0 (shows statistical limit !)
- $ZZ^* \rightarrow 4\ell$ and $\gamma\gamma$ and $\mu\mu$ channels: Scenario 2 ~realistic
- ττ, bb, WW: Experimental systematics on backgrounds dominant, data driven but need extrapolation to signal region ...

Signal Strength: µ at 300 fb⁻¹

CMS Projection



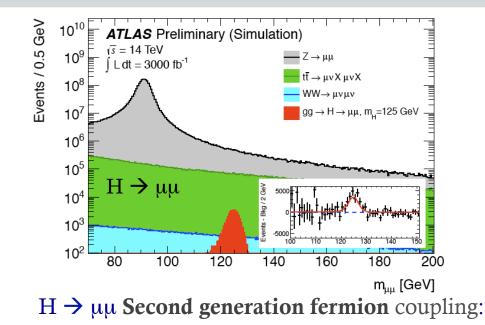
Similar results obtained by ATLAS (backup slides)

Couplings at HL-LHC: ATLAS

- MC Samples at 14 TeV from Fast-Sim.
 - Truth with smearing: best estimate of physics objects dependency on pile-up
 300 A
 - Validated with full-sim. up to $\mu \sim 70$
- Analyses included in ATLAS study:
 - $H \rightarrow \gamma \gamma$ 0-jet and VBF
 - $H \rightarrow \tau \tau$ VBF lep-lep and lep-had
 - $H \rightarrow ZZ \rightarrow 4\ell$
 - $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ 0-jet and VBF
 - WH/ZH $\rightarrow \gamma\gamma$
 - $ttH \rightarrow \gamma\gamma$ ($ttH \rightarrow \mu\mu$) Direct top Y coupling
 - $H \rightarrow \mu\mu$ Second generation fermion coupling
 - HH→ bb γγ Higgs Self-Couplings

Couplings fit at HL-LHC

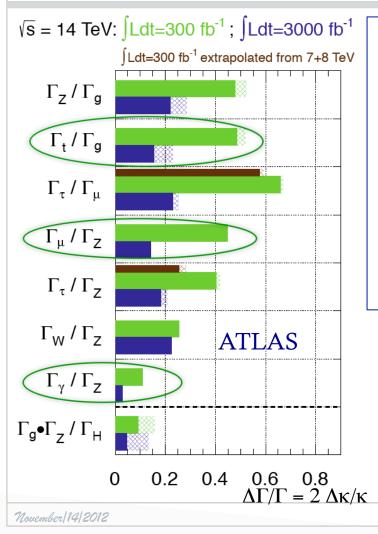
		Uncertainty (%)					
CMS	Coupling	$300 {\rm ~fb^{-1}}$		3000 fb^{-1}			
		Scenario 1	Scenario 2	Scer	nario 1	Scenario	2
	κ_{γ}	6.5	5.1	ļ	5.4	1.5	
	κ_V	5.7	2.7	4	4.5	1.0	
	κ_g	11	5.7		7.5	2.7	
	κ_b	15	6.9	_	11	2.7	
	κ_t	14	8.7	8	8.0	3.9	
	$\kappa_{ au}$	8.5	5.1	L.	5.4	2.0	


CMS Projection

Assumption NO invisible/undetectable contribution to $\Gamma_{\rm H}$:

- Scenario 1: system./Theory err. unchanged w.r.t. current analysis
- Scenario 2: systematics scaled by 1/sqrt(L), theory errors scaled by $\frac{1}{2}$
- ✓ $\gamma\gamma$ loop at 2-5% level
- ✓ down-type fermion couplings at 2-10% level
- ✓ direct top coupling at 4-8% level
- ✓ gg loop at 3-8% level

κ_{μ} Coupling at HL-LHC



Analysis strategy very similar to $\gamma\gamma$ (advantage that DY spectrum is predictable):

- Look for a narrow mass peak over continuous Z/DY background
- ATLAS and CMS can go (well) above 5σ /Experiment at HL-LHC
 - <u>κ_µ at 10% level/Experiment</u> (statistically limited)

Coupling Ratios Fit at HL-LHC

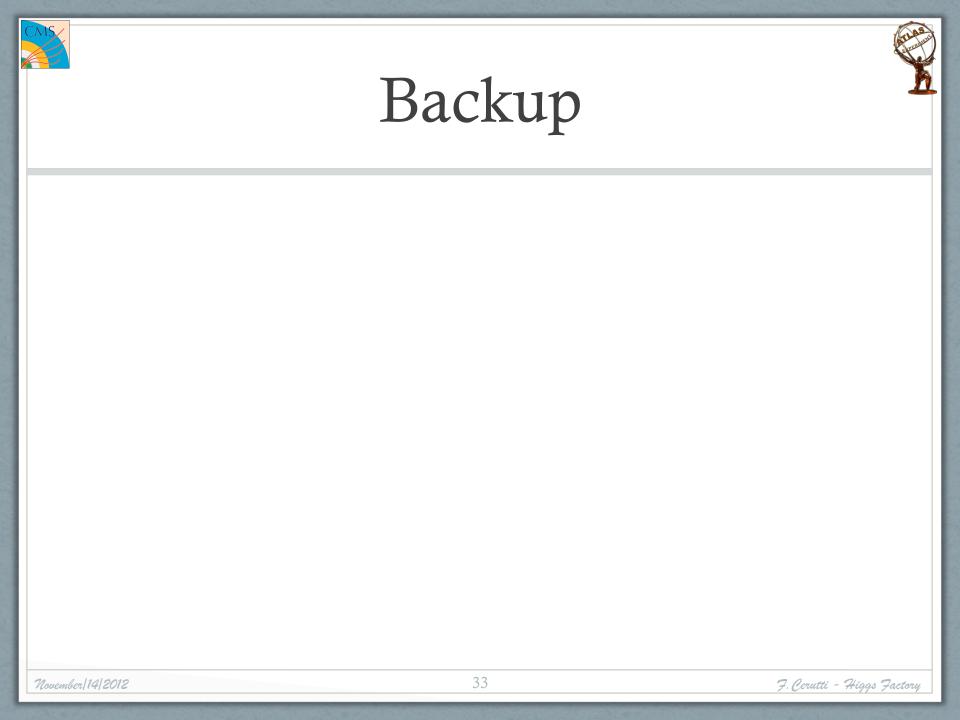
- Fit to coupling ratios:
 - No assumption BSM contributions to $\Gamma_{\rm H}$
 - Some theory systematics cancels in the ratios
- Loop-induced Couplings γγ and gg treated as independent parameter
 - $\kappa_{\gamma}/\kappa_{Z}$ tested at 2%
 - **gg** loop (BSM) κ_t / κ_g at 7-12%
 - 2^{nd} generation ferm. κ_{μ}/κ_{Z} at 8%

Higgs self-couplings λ_{HHH}

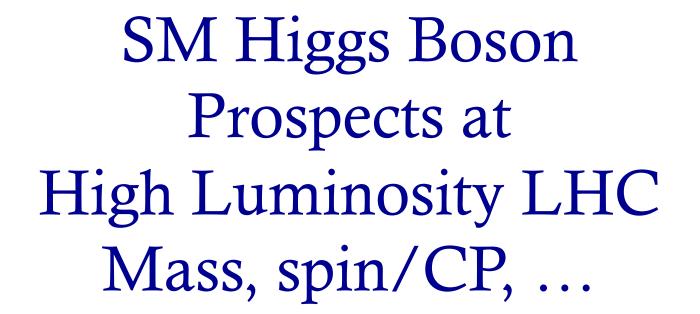
- Need to distinguish between HH production via H or V (negative interference)
 - CMS: HH \rightarrow bbyy or HH \rightarrow bbµµ (HE-LHC)
 - ATLAS: HH \rightarrow bbyy (under study HH \rightarrow bb $\tau\tau$)
- Example ATLAS analysis $bb\gamma\gamma$ Simple analysis $M_{\rm H}$ =125 GeV:
 - Cuts on Pt 2 γ (40/25) and 2 b-jets (25) and relative angles
 - $50 < M_{bb} < 130 \text{ GeV} 120 < M_{\gamma\gamma} < 130 \text{ GeV}$
- Signal[λ_{HHH} =1]=15, Signal[λ_{HHH} =0]=26, Background = 24 (mainly ttH)
 - 1 experiment: $\sim 2\sigma$ observation for $\lambda_{\text{HHH}}=1$
- Only one channel and very simple CUT-based analysis: we can do better

Conclusions

Approved LHC 300 fb⁻¹ at 14 TeV:


- Higgs mass at 100 MeV
- Disentangle Spin 0 vs Spin 2 and main CP component in ZZ*
- Coupling rel. precision/Exper.
 - Z, W, b, τ 10-15%
 - t, μ 3-2 σ observation
 - γγ and gg 5-11%

HL-LHC 3000 fb⁻¹ at 14 TeV:


- Higgs mass at 50 MeV
- More precise studies of Higgs CP sector
- Couplings rel. precision/Exper.
 - Z, W, b, τ, t, μ **2-10%**
 - γγ and gg 2-5%
 - $H \rightarrow HH > 3 \sigma$ observation (2 Exper.)

Assuming sizeable reduction of theory errors

LHC experiments entered the Higgs properties measurement era: this is just the beginning ! LHC Upgrade crucial step towards precision tests of the nature of the newly-discovered boson

Theory Errors

- Quite large in **gg** and **ttH** production ~ 15% Contributions:
 - QCD scale~8%
 - PDF+ $\alpha_s \sim 7\%$
- Prospects:
 - gg QCD scale uncertainty: $\sim 8\%$ @NNLO $\rightarrow \sim 5\%$ @NNNLO
 - E.g., see Anastasious http://www.ggi.fi.infn.it/talks/talk2773.pdf
 - PDF+ $\alpha_s \sim 7\% \rightarrow <5\%$ with fit to LHC data
 - Jet, top, prompt- γ , Z $\rightarrow d\sigma/dP_t$ contribute to gluon PDF

• Factor ~2 reduction on main theory errors very challenging but possible

HL-LHC mass measurement

- Mass measurement in $ZZ^* \rightarrow 4\ell$ and $\gamma\gamma$:
 - Statistical error down to ~ 50 (~ 15) MeV in 4I ($\gamma\gamma$) /Experiment
 - Systematics more difficult to predict:
 - $\gamma\gamma$: Photon Energy scale at the moment 600 MeV
 - 4I: calibrated with $Z \rightarrow II$ (Huge statistics) Today 200 MeV
- *"Educated guess"*: 50 MeV achievable at HL-LHC

Spin/CP

- Several channels observables sensitive to Spin and CP properties
- Production and Decay angles of different final states
 - $\gamma\gamma$ decay angle $\cos\theta^*$
 - WW* set of kinematic variables
 - ZZ* complete set of kinematic variables (8)
 - VBF production $\rightarrow \Delta \Phi j j$
 - $VH \rightarrow bb M_{VH}$

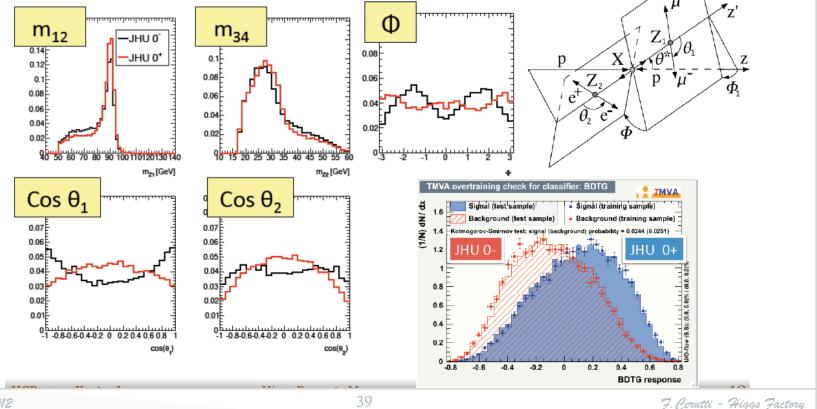
- Spin 0⁺ SM all observable can be predicted:
 - Strategy: Use SM-0⁺ as benchmark to test agreement with Spin/CP sensitive observables

Spin/CP

- Several spin=2 models can already be rejected with modest luminosity combining several final state
- CP in V sector can be studied with $H \rightarrow ZZ \rightarrow 41$
- General parameterization of CP amplitude:

 $A(X \to VV) \sim \left(a_1 M_X^2 g_{\mu\nu} + a_2 (q_1 + q_2)_\mu (q_1 + q_2)_\nu + a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta\right) \varepsilon_1^{*\mu} \varepsilon_2^{*\nu}$

- Complex form factors a_i :
 - SM tree level $a_1 = 1, a_2 = a_3 = 0 1$
 - Generated at loop level $a_2(\sim \text{few \%})$ and $a_3(\sim 10^{-10})$
- CP violation requires $(a_1 \text{ OR } a_2 \neq 0) \text{ AND } (a_3 \neq 0)$



Spin/Cp ZZ \rightarrow 4I

 \Box H \rightarrow ZZ* \rightarrow 41 is sensitive to Spin and CP

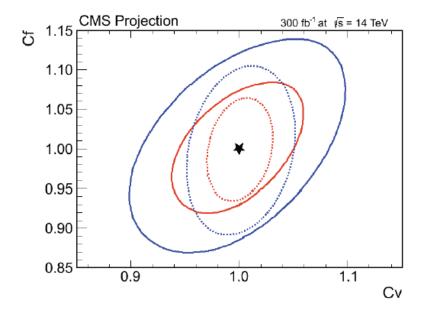
□ Observables: 5 Cabibbo-Masksymowicz angles, recon. *ℓℓ* masses

 \Box Expect to have ~3 σ separation (0⁺ vs 0⁻) for 30fb⁻¹ using BDT

November 14 2012

39

Spin/CP: ATLAS


Integrated	Signal (S) and	6 + 6 <i>i</i>	6 <i>i</i>	4 + 4i
Luminosity	Background (B)			
100 fb^{-1}	S = 158; B = 110	3.0	2.4	2.2
200 fb^{-1}	S = 316; B = 220	4.2	3.3	3.1
300 fb^{-1}	S = 474; B = 330	5.2	4.1	3.8

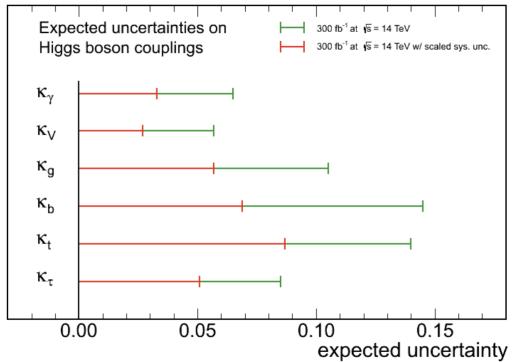
- Sensitivity to CP odd a₃ coupling vs L
- High luminosity can allow CP studies in Higgs sector via ZZ to 41 final state (very robust against pile-up)

$\kappa_V vs \kappa_F prospects$

Solid: Scenario 1 Dashed: Scenario 3 Assumes no BSM physics in total width Without theory errors better than 5% Can reduce impact of theory uncertainty and assumptions looking at ratio

ATLAS

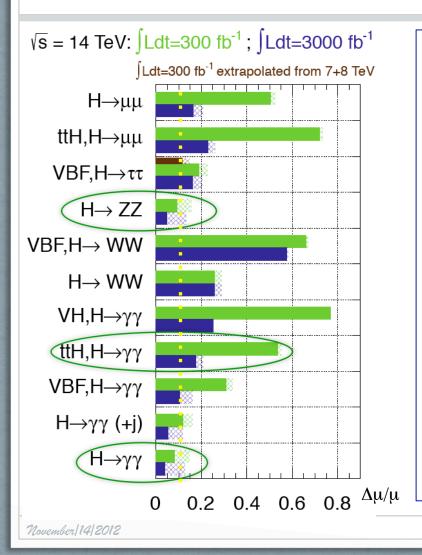
	$300 {\rm fb}^{-1}$	$3000 {\rm fb}^{-1}$	
κ_V		1.9% (4.5%)	
КF	8.9% (10%)	3.6% (5.9%)	
Test Fermion and Vector Boson			


couplings at 4-6% level !

CMS studies 300 fb⁻¹

CMS Projection

Global fit to main Higgs couplings Assumed NO invisible/ undetectable contribution to $\Gamma_{\rm H}$ - Scenario 1: sys. unchanged

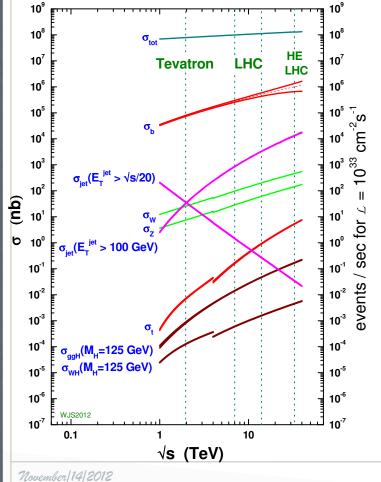

- Scenario 2: sys. 1/sqrt(L), theory errors divided by 2

к measured at 5-15%

ATLAS studies: µ at HL-LHC

Signal strength µ

- Dashed chart indicates theory unc. Contribution:
 - Dominant for ZZ and γγ final states: hope to improve on that or consider ratios
- Extrapolation of WW and ττ is more difficult since dominated by bkg.
 Systematics:
- ZZ, $\gamma\gamma$, $\tau\tau \sim 10\%$ (below with reduced theory errors or ratios)
- ttH \sim 20% (10% on coupling)


SM Higgs Boson Prospects at High Luminosity LHC cross-sections, Partial widths...

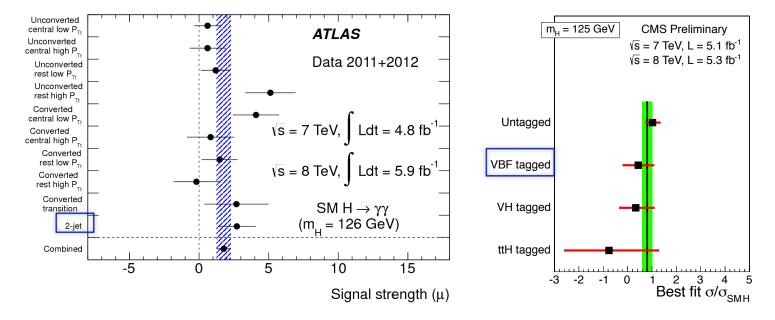
Signal XS evolution

proton - (anti)proton cross sections

	M _H =125 GeV 14 TeV				
Process	Cross section	Scale un	certainty	PDF+α _s un	certainty
ggF ^a	50.35 pb	+7.5%	-8.0%	+7.2%	-6.0%
VBF ^b	4.172 pb	+0.4%	-0.3%	+1.9%	-1.5%
WH °	1.504 pb	+0.3%	-0.6%	+3.8%	-3.8%
ZH °	0.8830 pb	+2.7%	-1.8%	+3.7%	-3.7%
ttH °	0.6113 pb	+5.9%	-9.3%	+8.9%	-8.9%

- $8 \rightarrow 14 \text{ TeV}$
 - Higgs σ 2.6 higher
 - tt σ 3.9 higher
- $8 \rightarrow 33 \text{ TeV}$
 - Higgs σ 9.2 higher
 - tt σ 22 higher

Partial Widths in SM

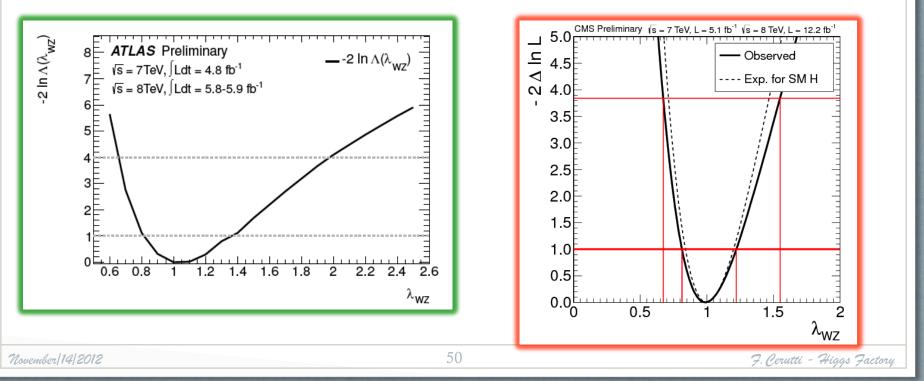

- SM Higgs (v= 246 GeV from G_F):
 - $\Gamma_{\rm ff}$ α $(m_{\rm f}/v)^2$
 - $\Gamma_{\rm WW} \, \alpha \, (2 \, {\rm M_W^2/v})^2$
 - Γ_{ZZ} α $(M_Z^2/v)^2$
 - $\Gamma_{\rm HH}$ α $(M_{\rm H}^2/v)^2$
 - $\Gamma_{\gamma\gamma}$ α (1.6 Γ_{WW} + 0.07 Γ_{tt} 0.7 Γ_{Wt})
 - $\Gamma_{gg} = \alpha (1.1 \Gamma_{tt} + 0.01 \Gamma_{bb} 0.12 \Gamma_{bt})$
- \rightarrow Wt interference
- \rightarrow bt interference
- $\Gamma_{Z\gamma} \quad \alpha (1.12 \ \Gamma_{WW} + 0.003 \ \Gamma_{tt} 0.12 \ \Gamma_{Wt}) \quad \rightarrow \text{Wt interference}$
- $\Gamma_{\rm H}$ (125 GeV) = 4 MeV (dominated by bb ~57%)

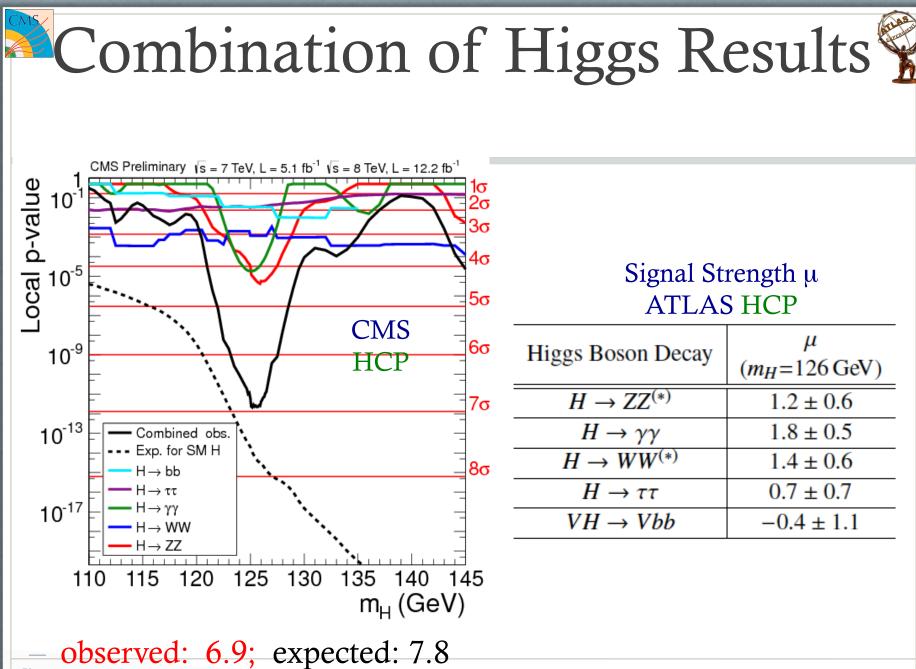
The Couplings fit

- Basic ingredient Yields per category:
 - Production modes: gg, VBF, W/ZH, ttH
 - Final states: $\gamma\gamma$, WW, ZZ, bb, $\tau\tau$, Z γ , $\mu\mu$

Custodial Symmetry $\lambda_{WZ} = k_W / k_Z$

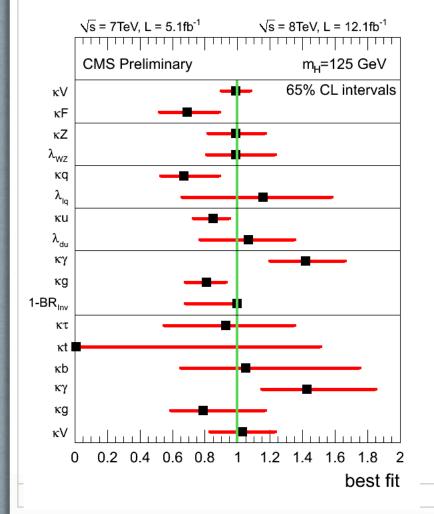
- Testing Custodial Symmetry W vs Z couplings
- Move to fit of RATIOs (can relax assumption on total width)
 - $\lambda_{WZ} = \kappa_W / \kappa_Z$
 - Two additional parameters $\lambda_{FZ} \kappa_{ZZ}$ in the fit but with small correlation with λ_{WZ}

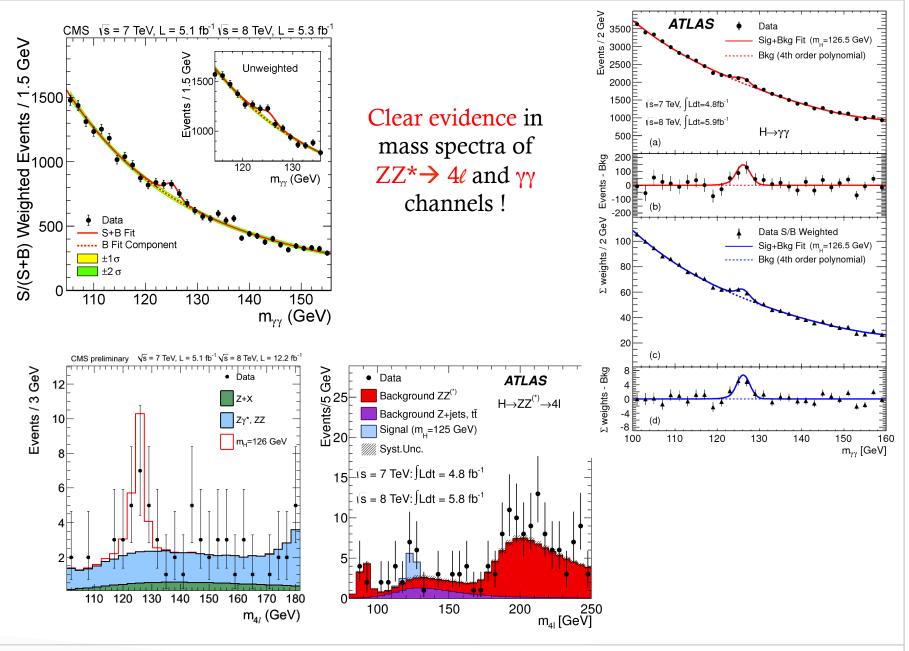

Free parameters: $\kappa_{ZZ} (= \kappa_Z \cdot \kappa_Z / \kappa_H), \lambda_{WZ} (= \kappa_W / \kappa_Z), \lambda_{FZ} (= \kappa_f / \kappa_Z).$				
	$\mathrm{H} \to \gamma\gamma$	$\mathrm{H} \to \mathrm{ZZ}^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^{-}\tau^{+}$
ggH ttH	$\kappa_{\mathrm{ZZ}}^2 \lambda_{FZ}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{\mathrm{ZZ}}^2\lambda_{FZ}^2$	$\kappa_{ZZ}^2\lambda_{FZ}^2\cdot\lambda_{WZ}^2$	$\kappa_{ZZ}^2\lambda_{FZ}^2\cdot\lambda_{FZ}^2$
VBF	$\kappa_{\mathrm{ZZ}}^2 \kappa_{\mathrm{VBF}}^2(1,\lambda_{\mathrm{WZ}}^2) \cdot \kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{WZ})$	$\kappa_{\mathrm{ZZ}}^2\kappa_{\mathrm{VBF}}^2(1,\lambda_{\mathrm{WZ}}^2)$	$\kappa^2_{\mathrm{ZZ}}\kappa^2_{\mathrm{VBF}}(1,\lambda^2_{\mathrm{WZ}})\cdot\lambda^2_{\mathrm{WZ}}$	$\kappa^2_{ m ZZ}\kappa^2_{ m VBF}(1,\lambda^2_{ m WZ})\cdot\lambda^2_{FZ}$
WH	$\kappa^2_{ m ZZ}\lambda^2_{ m WZ}\cdot\kappa^2_{ m \gamma}(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{ m WZ})$	$\kappa^2_{ m ZZ} \cdot \lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ}\lambda^2_{ m WZ}\cdot\lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ} \lambda^2_{ m WZ} \cdot \lambda^2_{FZ}$
ZH	$\kappa^2_{\mathrm{ZZ}} \cdot \kappa^2_{\gamma}(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{\rm ZZ}^2$	$\kappa^2_{ m ZZ} \cdot \lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ} \cdot \lambda^2_{FZ}$


Probing custodial symmetry without assumptions on the total width E_{res} permuters $res (= re_{res} / re_{res})$ and $(= re_{res} / re_{res})$

Custodial Symmetry $\lambda_{WZ} = k_W / k_Z$

- Move to fit of **RATIOs** (can relax assumption on total width)
 - $\lambda_{WZ} = \kappa_W / \kappa_Z$
 - Two additional parameters $\lambda_{FZ} \kappa_{ZZ}$ in the fit but with small correlation with λ_{WZ}
 - dominated by relative WW and ZZ yields and by BRyy that scales mainly as κ_W^2




Couplings summary CMS

• Overall good compatibility with SM predictions

Model parameters	Assessed scaling factors		
-	(95% CL intervals)		
λ_{wz}, κ_z	λ_{wz}	[0.57–1.65]	
$\lambda_{wz}, \kappa_z, \kappa_f$	λ_{wz}	[0.67–1.55]	
$\kappa_{\rm v}$	$\kappa_{\rm v}$	[0.78–1.19]	
κ _f	κ_f	[0.40–1.12]	
κ _γ , κ _g	κ_{γ}	[0.98-1.92]	
	κ _g	[0.55-1.07]	
$\mathcal{B}(\mathrm{H} \to \mathrm{BSM}), \kappa_{\gamma}, \kappa_{g}$	$\mathcal{B}(H \to BSM)$	[0.00–0.62]	
$\lambda_{\rm du},\kappa_{\rm v},\kappa_{\rm u}$	λ_{du}	[0.45–1.66]	
$\lambda_{\ell q}, \kappa_{v}, \kappa_{q}$	$\lambda_{\ell q}$	[0.00–2.11]	
	$\kappa_{\rm v}$	[0.58–1.41]	
	κ_b	[not constrained]	
$\kappa_v, \kappa_b, \kappa_\tau, \kappa_t, \kappa_g, \kappa_\gamma$	$\kappa_{ au}$	[0.00–1.80] 🚫	
	κ_t	[not constrained]	
	κ _g	[0.43-1.92]	
	κγ	[0.81-2.27]	

7. Cerutti - Higgs Factory